2008 Vol. 14, No. 2

IMPROVEMENT OF NUMERICAL SIMULATION OF TYPHOON RANANIM (0414) BY USING DOPPLER RADAR DATA
YU Zhen-shou, ZHONG Jian-feng, ZHAO Fang, JI Chun-xiao
2008, 14(2): 89-92.
Abstract(1232) PDF [148KB](1120)
Abstract:
Typhoon Rananim (0414) has been simulated by using the non-hydrostatic Advanced Regional Prediction System (ARPS) from Center of Analysis and Prediction of Storms (CAPS). The prediction of Rananim has generally been improved with ARPS using the new generation CINRAD Doppler radar data. Numerical experiments with or without using the radar data have shown that model initial fields with the assimilated radar radial velocity data in ARPS can change the wind field at the middle and high levels of the troposphere; fine characteristics of the tropical cyclone (TC) are introduced into the initial wind, the x component of wind speed south of the TC is increased and so is the y component west of it. They lead to improved forecasting of TC tracks for the time after landfall. The field of water vapor mixing ratio, temperature, cloud water mixing ratio and rainwater mixing ratio have also been improved by using radar reflectivity data. The model’s initial response to the introduction of hydrometeors has been increased. It is shown that horizontal model resolution has a significant impact on intensity forecasts, by greatly improving the forecasting of TC rainfall, and heavy rainstorm of the TC specially, as well as its distribution and variation with time.
ANALYSIS OF THE WESTWARD EXTENSION OFWESTERN PACIFIC SUBTROPICAL HIGH DURING A HEAVY RAIN PERIOD OVERSOUTHERN CHINA IN JUNE 2005
SI Dong, XU Hai-ming, WEN Min, HE Jin-hai
2008, 14(2): 93-96.
Abstract(1336) PDF [65KB](1536)
Abstract:
The NCEP/NCAR II daily mean reanalysis data and observed precipitation data are employed to investigate the westward extension of the western Pacific subtropical high (WPSH) during the heavy rain period over the southern China in June 2005. Results show that there may exist a relationship between the east-west shift of the WPSH and the process of a southern China heavy rain. The analysis indicates that the vertical motion in the WPSH area is mainly caused by the latent heat release of monsoon rain belts on its northern and southern sides. The vertical motion could cause the accumulation of air mass in the center and west of the WPSH, which leads to its strengthening. The appearance of the northern and southern monsoon rain belts could not only enhance the WPSH by strengthening the descending draft, but also excite the development of positive vorticity and restrict the WPSH’s movement in the north–Csouth direction. Moreover, the Indian monsoon rainfall to the west of the WPSH may excite the development of anticyclonic vorticity on its eastern side, which leads to the westward extension of the WPSH.
INTERANNUAL VARIATION CHARACTERISTICS OF EAST HEMISPHERIC CROSS-EQUATORIAL FLOW AND ITS CONCURRENT RELATIONSHIPS WITH TEMPERATURE AND RAINFALL IN CHINA
LEI Xiao-chun, YANG Xiu-qun
2008, 14(2): 97-100.
Abstract(1234) PDF [57KB](1023)
Abstract:
The NCEP/NCAR global reanalysis data were used to analyze the interannual variation characteristics of the cross-equatorial flow (CEF) and its concurrent relationships with temperature and rainfall in China. The results indicated that CEF changes more in summer than in winter. As the main flow channel in summer, the Somali CEF changes in a way that does not markedly influence the changes in the CEF total except for winter. The summer CEF total has two sudden increases and one sudden decrease during the last century while the winter total has just one decrease. Long-period data show that the correlation between CEF and summer rainfall in China is not very significant, but is different before and after the 1970s, which is due to CEF’s close links with the East Asia summer monsoon. Winter CEF’s correlation with concurrent winter temperature in northern and southern China varies with the relationship between CEF and sea-level pressure in different areas.
TYPICAL WEATHER CHARACTERISTICS ASSOCIATED WITH AIR POLLUTION IN HONG KONG AREA
CHEN Xun-lai, FAN Shao-jia, LI Jiang-nan, LIU Ji, WANG An-yu, FONG Soi-kun
2008, 14(2): 101-104.
Abstract(1305) PDF [266KB](1694)
Abstract:
With the hourly data of Air Pollution Index (API) by Hong Kong Environmental Protection Department (HKEPD) during the 6 years of 2000 - 2005 and NCEP / NCAR reanalysis data of 2.5° × 2.5° wind and pressure fields, the characteristics of API in Hong Kong area and the impacts of typical weather characteristics on the air pollution in Hong Kong have been studied. The results are shown as follows. (1) The API exhibits obvious seasonal variability as the number of air pollution days increases by the year. For most of the local monitoring stations, it is the most from January to March, a little less from July to September and the least from April to June. (2) There are four typical types of weather situations that are responsible for the air pollution in Hong Kong: tropical cyclones, continental cold highs, transformed highs that have moved out to sea and low pressure troughs.
ANALYSIS OF THE CHARACTERISTICS OF SUSTAINED TORRENTIAL RAINS IN JUNES DURING 1958-2000
DING Zhi-ying, CHANG Yue, ZHU Li, HE Jin-hai
2008, 14(2): 105-108.
Abstract(1286) PDF [133KB](1167)
Abstract:
Day-to-day precipitation data of Junes during the 43 years of 1958-2000 from stations to the south of Yangtze River are used to divide regions and run statistical analysis of sustained torrential rainfall processes. A preliminary analysis is then made based on it and the results show that June is the month in which torrential rains in the southern half of China take place frequently and sustained torrential rains occur at the same time in South China and the area to the south of Yangtze River. In addition, the analysis gives the basic features of sustained torrential rains of June in China and their interannual variability patterns, with the suggestion that the amount of these events increases significantly after the 1990s. Lastly, the sustained torrential rains occurring in Junes of 1994, 1998 and 2005 in the southern half of China are taken as examples in the research on the basic patterns and formation mechanisms of the evolution of double rain-bands during the rain season in South China and the area to the south of Yangtze River. The analysis shows that the large scale environment field in which sustained torrential rains occur is related to the stable sustaining of the South Asia High and upper level jet streams.
A STUDY ON VARIABLE QUANTITATIVE PRECIPITATION ESTIMATION USING DOPPLER RADAR DATA
JI Chun-xiao, CHEN Lian-shou, XU Xiang-de, ZHAO Fang, WU Meng-chun
2008, 14(2): 109-112.
Abstract(1165) PDF [257KB](1367)
Abstract:
With the pros and cons of the traditional optimization and probability pairing methods thoroughly considered, an improved optimal pairing window probability technique is developed using a dynamic relationship between the base reflectivity Z observed by radar and real time precipitation I by rain gauge. Then, the Doppler radar observations of base reflectivity for typhoons Haitang and Matsa in Wenzhou are employed to establish various Z-I relationships, which are subsequently used to estimate hourly precipitation of the two typhoons. Such estimations are calibrated by variational techniques. The results show that there exist significant differences in the Z-I relationships for the typhoons, leading to different typhoon precipitation efficiencies. The typhoon precipitation estimated by applying radar base reflectivity is capable of exhibiting clearly the spiral rain belts and mesoscale cells, and well matches the observed rainfall. Error statistical analyses indicate that the estimated typhoon precipitation is better with variational calibration than the one without. The variational calibration technique is able to maintain the characteristics of the distribution of radar-estimated typhoon precipitation, and to significantly reduce the error of the estimated precipitation in comparison with the observed rainfall.
THE RELATIONSHIP BETWEEN SOUTH CHINA SEA SOUTHWEST MONSOON ANOMALIES AND IMPORTANT WEATHER IN GUANGDONG PROVINCE DURING THE RAINING SEASONS
XIE Jiong-guang, JI Zhong-ping, GU De-jun, LIANG Jian-yin
2008, 14(2): 113-116.
Abstract(1267) PDF [58KB](1078)
Abstract:
The activity of South China Sea southwest monsoon (SCSSM) has direct impacts on the anomalies of important weather in Guangdong province during the raining seasons. So it is necessary to explore thoroughly the activity pattern of SCSSM and its relationship with important weather anomalies in the province. In this paper, the methods of composite analysis and correlation statistics are used to study the relationship between the onset date and intensity of SCSSM and the important weather, such as precipitation trends in Guangdong province during the annually first and second raining seasons, the timing of the annually first and last typhoon and the number of typhoons landing in Guangdong province. The results show that the rainfall is less than normal during the first raining season, but more than normal during the second one and there are more tropical cyclones landing in Guangdong province in the years of early SCSSM onset. The rainfall is more than normal during the second raining season and there are more tropical cyclones landing in Guangdong province in the years of strong SCSSM. The relationship between the SST of April - June, July - September and previous winter (December - February) and 500 hPa geopotential height and the onset date and intensity of SCSSM is analyzed. Some mechanisms between the onset dates and intensity of SCSSM and the important weather anomalies in Guangdong province are preliminarily explored. The results can be used for reference in short-term climate forecast.
EVALUATION OF TEMPERATURE RECORDS OBTAINED BY AWS IN HAINAN PROVINCE AND ADJUSTMENT OF CLIMATOLOGICAL TIME SERIES
XIN Ji-wu, XU Xiang-chun, XING Xu-huang, YAN Jing-min
2008, 14(2): 117-120.
Abstract(1226) PDF [53KB](1172)
Abstract:
Based on the parallel air temperature data of automatic sounding and manual observations at 16 weather stations in Hainan province from 2004 to 2005, a comparative analysis and evaluation is made for validity according to relevant standards. The results indicate that there are daily and seasonal differences between temperature observations recorded by automatic weather stations (AWSs) and with conventional methods. The reasons for the differences are the systematic error, the sensitivity of the two types of instruments to the environmental temperature change, the difference of the observation time and the effect of solar radiation. Because the long-range data were obtained from manual observation, an empirical conversion formula between the temperature records obtained by the instruments is provided for continuous use of the climate data after the changes in instruments.
COMPARISONS OF THE WEST PACIFIC SUBTROPICAL HIGH AND THE SOUTH ASIA HIGH BETWEEN NCEP/NCAR AND ECMWF REANALYSISDATASETS
CHEN Wen, ZHI Xie-fei
2008, 14(2): 121-124.
Abstract(1208) PDF [235KB](1182)
Abstract:
Comparisons of the west Pacific subtropical high with the South Asia High are made using the NCEP/NCAR and ECMWF 500 hPa and 100 hPa monthly boreal geopotential height fields for the period 1961 –C 2000. Discrepancies are found for the time prior to 1980. The west Pacific subtropical high in the NCEP/NCAR data is less intense than in ECMWF data before 1980. The range and strength of the west Pacific subtropical high variation described by the NCEP/NCAR data are larger than those depicted by ECMWF data. The same situation appears in the 100-hPa geopotential field. These discoveries suggest that the interdecadal variation of the two systems as shown by the NCEP/NCAR data may not be true. Besides, the South Asia High center in the NCEP/NCAR data is obviously stronger than in the ECMWF data during the periods 1969, 1979 –C 1991 and 1992 –C 1995. Furthermore, the range is larger from 1992 to 1995.
CLIMATIC CHARACTERISTICS OF TYPHOON PRECIPITATION OVER CHINA
WANG Yong-mei, REN Fu-min, LI Wei-jing, WANG Xiao-ling
2008, 14(2): 125-128.
Abstract(1277) PDF [268KB](1358)
Abstract:
The spatio-temporal characteristics of typhoon precipitation over China are analyzed in this study. The results show that typhoon precipitation covers most of central-eastern China. Typhoon precipitation gradually decreases from the southeastern coastal regions to the northwestern mainland. The maximum annual typhoon precipitation exceeds 700 mm in central-eastern Taiwan and part of Hainan, while the minimum annual typhoon precipitation occurs in parts of Inner Mongolia, Shanxi, Shaanxi and Sichuan, with values less than 10 mm. Generally, typhoons produce precipitation over China during April –C December with a peak in August. The annual typhoon precipitation time series for observation stations are examined for long-term trends. The results show that decreasing trends exist in most of the stations from 1957 to 2004 and are statistically significant in parts of Taiwan, Hainan, coastal Southeast China and southern Northeast China. The anomaly of typhoon precipitation mainly results from that of the general circulation over Asia and the Walker Cell circulation over the equatorial central and eastern Pacific. Typhoon torrential rain is one of the extreme rainfall events in the southeastern coastal regions and parts of central mainland. In these regions, torrential rains are mostly caused by typhoons.
CHARACTERISTICS OF MEI-YU PRECIPITATION AND SVD ANALYSIS OF PRECIPITATION OVER THE YANGTZE-HUAIHE RIVERS VALLEYS AND THE SEA SURFACE TEMPERATURE IN THE NORTHERN PACIFIC OCEAN
MAO Wen-shu, WANG Qian-qian, PENG Jun, LI Yong-hua
2008, 14(2): 129-132.
Abstract(1245) PDF [360KB](1042)
Abstract:
Based on the precipitation data of Meiyu at 37 stations in the valleys of Yangtze and Huaihe Rivers from 1954 to 2001, the temporal-spatial characteristics of Meiyu precipitation and their relationships with the sea surface temperature in northern Pacific are investigated using such methods as harmonic analysis, empirical orthogonal function (EOF), composite analysis and singular value decomposition (SVD). The results show that the temporal evolution and spatial distribution of Meiyu precipitation are not homogeneous in the Yangtze-Huaihe Rivers basins but with prominent inter-annual and inter-decadal variabilities. The key region between the anomalies of Meiyu precipitation and the monthly sea surface temperature anomalies (SSTA) lies in the west wind drift of North Pacific, which influences the precipitation anomaly of Meiyu precipitation over a key period of time from January to March in the same year. When the SST in the North Pacific west wind drift is warmer (colder) than average during these months, Meiyu precipitation anomalously increases (decreases) in the concurrent year. Results of SVD are consistent with those of composite analysis which pass the significance test of Monte-Carlo at 0.05.
PREVIOUS CONVECTION ANOMALY IN AUTUMN AND WINTER ASSOCIATED WITH THE GENERAL CIRCULATION OVER EAST ASIA INWINTER AND SPRING AND APRIL PRECIPITATION IN SHANDONG
HU Gui-fang, ZHANG Xuan, GU Wei-zong
2008, 14(2): 133-136.
Abstract(1289) PDF [224KB](966)
Abstract:
Using OLR and 850 hPa and 200 hPa wind fields data (1979 –C 2006), this paper diagnoses the characteristics of convection over the tropical area in preceding autumns and winters in association with April precipitation anomalies in Shandong province. It is found that preceding convection anomalies over the Western Pacific Warm Pool in December have close relationships with the April precipitation in Shandong. Further analysis of the relationship with the general circulation over the East Asia shows that the convection anomaly over the Western Pacific Warm Pool has close relationships with the Main East Asian Trough, the Hadley cell over East Asia and the Walker cell. The characteristics of East Asian atmospheric circulation anomalies accompanied with stronger (weaker) convection are consistent with those of less (more) April precipitation anomalies in Shandong. Therefore, the convection anomaly over the tropics in December may be an important indicator for April precipitation in Shandong.
STUDY ON THE RELATIONSHIP BETWEEN THE DECADAL VARIATIONS OF ANNUALLY FIRST RAINY SEASON PRECIPITATION OF GUANGXIAND SEA SURFACE TEMPERATURE OF INDIAN OCEAN IN SOUTHERN HEMISPHERE
KUANG Xue-yuan, HUANG Mei-li, LIN Zhen-min, HUANG Xue-song
2008, 14(2): 137-140.
Abstract(1230) PDF [305KB](1155)
Abstract:
Decadal circulation differences between more and less rainfall periods in the annually first rainy season of Guangxi and their association with sea surface temperature (SST) of the austral Indian Ocean are investigated by using the NCEP/NCAR reanalysis data. The results are shown as follows. A pattern in which there is uniform change of the Guangxi precipitation shows a 20-year decadal oscillation and a 3-year interannual change. In contrast, a pattern of reversed-phase change between the north and the south of Guangxi has a 6-year interannual periodicity and quasi-biennial oscillation. In the period of more precipitation, the surface temperature in Eurasia is positively anomalous so as to lead to stronger low pressure systems on land and larger thermal contrast between land and ocean. Therefore, the air column is more unstable and ascending flows over Guangxi are intensified while the Hadley cell is weakened. Furthermore, the weaker western Pacific subtropical high and South Asia High, together with a stronger cross-equatorial flow, result in the transportation of more humidity and the appearance of more precipitation. The correlation analysis indicates that the Indian Ocean SST in Southern Hemisphere is closely associated with the variation of the seasonal precipitation of Guangxi on the decadal scale by influencing the Asian monsoon through the cross-equatorial flow.
ENTROPY FLOW CHARACTERISTICS ANALYSIS OF TYPHOON MATSA (0509)
XU Hui, LIU Chong-jian
2008, 14(2): 141-144.
Abstract(1331) PDF [446KB](1180)
Abstract:
The evolution of Typhoon Matsa (0509) is examined in terms of entropy flow through an entropy balance equation derived from the Gibbs relation, according to the second law of thermodynamics. The entropy flows in the various significant stages of (genesis, development and decaying) during its evolution are diagnosed based on the outputs of the PSU/NCAR mesoscale model (known as MM5). The results show that: (1) the vertical spatial distribution of entropy flow for Matsa is characterized by a predominantly negative entropy flow in a large portion of the troposphere and a positive flow in the upper levels; (2) the fields of entropy flows at the middle troposphere (500 hPa) show that the growth of the typhoon is greatly dependent on the negative entropy flows from its surroundings; and (3) the simulated centres of heavy rainfall associated with the typhoon match well with the zones of large negative entropy flows, suggesting that they may be a significant indicator for severe weather events.
DIAGNOSIS AND IDENTIFICATION OF DYNAMIC CORRELATION FACTORS BETWEEN WEST-PACIFIC SUBTROPICAL HIGH AND EAST ASIAMONSOON SYSTEM INDEXES
DONG Zhao-jun, ZHANG Ren, YU Dan-dan, CHENG Ming, WAN Lei
2008, 14(2): 141-144.
Abstract(1288) PDF [81KB](1126)
Abstract:
Based on the daily reanalysis data of NCEP / NCAR and by using the method of phase space reconstruction, the point conditional probability density of the subtropical high ridge index are determined and then used, together with their power spectra, to seek the correlation between them and individual monsoon-affecting factors and their power spectra. Through diagnosis, six indexes are discovered that have the most important effects on the subtropical high index. The results of the diagnosis indicate that the technique can identify the factors which are dynamically correlated. It can offer the basis in determining and choosing dynamic conceptual factors.
APPLICATION OF AN OBJECTIVE DISCRIMINATING METHOD IN THE EVOLUTION OF TROPICAL CYCLONE“HAIMA” DURING EXTRATROPICAL TRANSITION
ZHANG Ying-xin, ZHANG Shou-bao, WANG Fu-xia
2008, 14(2): 149-152.
Abstract(1279) PDF [420KB](1063)
Abstract:
An objective method for discriminating the process of extratropical transition (ET) in tropical cyclones is introduced. With this method, the gridpoint output data of NWP are used to calculate three parameters: storm-relative thickness symmetry (B), low-level ( L-VT ) and upper-level thermal wind ( U-VT ). This objective method is easy to calculate and convenient for operational use. To verify the method, this paper uses the NCEP reanalysis data to identify the evolution of ET for “Haima”, a tropical storm (0421) that affected the eastern part of China in 2004. The result shows that the three parameters defined with the objective method are good indicators of the ET process.
THE INFLUENCE OF SOUTH CHINA SEA SUMMER MONSOON ON THE RAINSTORM ASSOCIATED WITH THE LANDFALLING STRONGTROPICAL STORM BILIS (0604)
LIU Chun-xia, JIANG Xiao-ping, FEI Zhi-bin, ZHAO Si-nan, LUO Wan-jun
2008, 14(2): 153-156.
Abstract(1306) PDF [452KB](1059)
Abstract:
Bilis (0604) is a strong tropical storm that sustained over land for a long time, bringing torrential rain. With conventional observation data, radar data and infrared satellite imagery, Mesoscale Convective Systems (MCSs) are found to form and develop successively, which cause torrential rain. Then numerical simulation is conducted using MM5 to simulate a 66-h post-landfall process. The simulated distribution and intensity of precipitation match the observation well. With the simulated result, the characteristics and process of MCS development are analyzed with the finding that the convergence of the tropical depression and South China Sea (SCS) summer monsoon over The south of China causes the formation of a mesoscale vortex, mesoscale convergence center and mesoscale convergence line, which are favorable to the development and sustaining of the MCSs. A sensitivity experiment indicates that the SCS summer monsoon transports unstable energy and water vapor continuously, which is of vital importance to rainstorms.
SPATIAL AND TEMPORAL VARIATIONS OF EVAPORATION OVER SOUTH CHINA IN AUTUMN
XIAO Wei-jun, LIANG Yu-qiong, HE Ju-xiong, CHEN Bing-hong
2008, 14(2): 157-160.
Abstract(1178) PDF [113KB](1223)
Abstract:
The spatial and temporal variations of the instrument-based evaporation and actual evaporation in autumn during a 45-year period from 1960 to 2004 are studied using the observation data from 66 stations over South China. The results reveal that there are two main anomalous centers of the instrument-based evaporation in autumn in the central and northwestern parts of South China respectively. The instrument-based evaporation over the central part of South China in autumn experiences not only a decreasing trend but also a main interdecadal variation. The solar radiation is best correlated with the instrument-based evaporation among all affecting factors. For the actual evaporation, two main anomalous centers are located at the central and western parts of the South China respectively. The actual evaporation over the two regions illustrates an interannual variation. Among the affecting factors, precipitation is the most remarkable. The actual evaporation is usually 40 percent of the instrument-based one, and the overall rate has a slightly increasing trend from the southern part to the northern part of the South China in autumn.
CLIMATOLOGICAL VARIATION FEATURES OF TYPHOON PRECIPITATION INFLUENCING FUJIAN FOR THE PAST 46 YEARS
LIN Xiao-hong, REN Fu-min, LIU Ai-ming, HUANG Zhi-gang, LIAO Kuo
2008, 14(2): 161-164.
Abstract(1352) PDF [213KB](1140)
Abstract:
The results of an analysis of the temporal and spatial distribution of typhoon precipitation influencing Fujian from 1960 to 2005 show that typhoon precipitation in Fujian province occurs from May to November, with the most in August. There has been a decreasing trend since 1960. Typhoon precipitation gradually decreases from the coastal region to the northwestern mainland of Fujian and the maximum typhoon precipitation occurs in the northeast and the south of Fujian. Typhoon torrential rain is one of the extreme rainfall events in Fujian. High frequencies of typhoon torrential rain occur in the coastal and southwest regions of the province. With the impact of Fujian’s terrain, typhoon precipitation occurs more easily to the east of the mountains than to the west. Atmospheric circulation at 500 hPa over Asia and sea surface temperature anomalies of the equatorial eastern Pacific are analyzed, with the finding that they are closely connected with the anomaly of typhoon precipitation influencing Fujian, possibly mainly by modulating the northbound track of typhoons via changing the atmosphere circulation to lead to the anomaly of typhoon precipitation over the province.
QUALITY CONTROL OF SINGLE DOPPLER RADAR DATA AND RETRIEVAL OF HORIZONTAL WIND FOR A LANDING TYPHOON
LIU Shu-yuan, YAN Li-feng, SUN Jian
2008, 14(2): 165-167.
Abstract(1445) PDF [157KB](1163)
Abstract:
The removal of noise and velocity ambiguity and retrieval and verification of horizontal wind field is a prerequisite to make the best and fullest use of Doppler radar measurements. This approach was applied to the Doppler radar data collected during August 2005 for a landing typhoon Matsa (0509) in Yantai, Shangdong Province, and the verified result shows that the quality control for this dataset was successful. The horizontal wind field was retrieved and then verified by studying the characteristics of the radar radial velocity and large-scale wind field and the vertical cross section of the radial velocity determined with the typhoon center as the circle center and comparing it with satellite imagery. The results show that the meso- and small-scale systems in Matsa and its horizontal and vertical structure could be clearly retrieved using the dataset collected by single Doppler radar, and a shear or a convergence was corresponding with a band of severe storm around Matsa. At the same time, the retrieved wind field from single Doppler radar is proved to be a reliable and high-resolution dataset in analyzing the inner meso-scale structure of Matsa. It is also proved that the method for removing the velocity ambiguity could be an effective approach for preliminary quality control of the Doppler radar data, and the VAP method could also be a reasonable solution for the analysis of mesoscale wind field.