2008 Vol. 14, No. 1

NUMERICAL EXPERIMENTS AND ANALYSIS OF DIGITAL FILTER INITIALIZATION FOR WRF MODEL
WANG Shu-chang, HUANG Si-xun, ZHANG Wei-min, ZHU Xiao-qian, CAO Xiao-qun, LI Yi
2008, 14(1): 1-10.
Abstract(1657) PDF [894KB](2134)
Abstract:
Initialization and initial imbalance problem were discussed in the context of a three-dimensional variational data assimilation system of the new generation “Weather Research and Forecasting Model”. Several options of digital filter initialization have been tested with a rain storm case. It is shown that digital filter initialization, especially diabatic digital filter initialization and twice digital filter initialization, have effectively removed spurious high frequency noise from initial data for numerical weather prediction and produced balanced initial conditions. For six consecutive intermittent data assimilation cycles covering a 3-day period, mean initialization increments and impact on forecast variables are studied. DFI has been demonstrated to provide better adjustment of the hydrometeors and vertical velocity, reduced spin-up time, and improved forecast variables quantity.
COMPREHENSIVE ANALYSIS OF THE MACRO- AND MICRO-PHYSICAL CHARACTERISTICS OF DENSE FOG IN THE AREA SOUTH OF THE NANLING MOUNTAINS
DENG Xue-jiao, WU Dui, SHI Yue-qin, TANG Hao-hua, FAN Shao-jia, HUANG Hao-hui, MAO Wei-kang, YE Yan-xiang
2008, 14(1): 11-14.
Abstract(1584) PDF [54KB](1410)
Abstract:
Using the composite field observational data collected in the area south of the Nanling Mts. and numerical modeling, the seasonal features of dense fog and visibility, fog drop spectrum and physicalconcept of fog forming have been analyzed. The occurring frequency of low visibility(≤200 m) is very high with a mean of 24.7%, a maximum of 41.8% from the end of autumn to winter and next spring. The fog processes that occur in the area south of the Nanling Mts. in spring and winter result from the interactions of complicated micro-physical processes, the local terrain, water vapor transportation and the influencing weather system. The fog processes are arisen from advection or windward slope, which is much different from the radiation fog. Cooling condensation due to the air lifted by the local mountain plays an important role in fog formation. Windward slope of the mountain is favorable to the fog formation. Dense fog can occur at lower altitudes in the windward slope of mountain, resulting in the lower visibility. The fog is mainly of small-drop spectrum with smaller number-density than that of urban fog, and its drop spectrum has descending trend in the section of smaller diameter. The inverse relationship between fog water content and visibility is the best among several relationships of micro-variables. In addition to micro-physical processes of fog body itself, the motion of irregular climbing and crossing over hillside while the fog body is being transported by the wind are also important reasons for the fluctuation of micro-physical parameters such as fog water content.
VARIATION FEATURES OF SOMALI CROSS-EQUATORIAL FLOW AND ITS IMPACT ON THE LOCATION OF THE SUBTROPICAL HIGH RIDGE FROM JULY TO SEPTEMBER
LIN Xin-bin, XU Jin-jing, WEN Zhen-zhi, HE Fen, CHI Yan-zhen
2008, 14(1): 15-18.
Abstract(1848) PDF [61KB](1281)
Abstract:
The variation features of the cross-equatorial flow and its impact on the ridge position of the subtropical high have been analyzed in this paper. It is shown as follows. (1) The intensity of the Somalicross-equatorial flow is increasing in winter and summer in the past 44 years and the airflow of Northem Hemisphere exchanges more and more intensively with that of Southern Hemisphere. (2) The Somalicross-equatorial flow in May has the most impact on the ridge position of the subtropical high in the typhoon season, presenting a positive correlation. (3) The diagnosis is consistent with the real situation in 2005.
SIMULATION OF PRESENT CLIMATE OVER EAST ASIA BY A REGIONAL CLIMATE MODEL
2008, 14(1): 19-23.
Abstract(1613) PDF [1426KB](1726)
Abstract:
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of themodel in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. AS for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.
STUDY ON CLIMATIC CHARACTERISTICS OF CHINA-INFLUENCING TYPHOONS AND THE INTERRELATIONS BETWEEN THEM AND THEIR ENVIRONMENTAL FACTORS
2008, 14(1): 24-27.
Abstract(1608) PDF [54KB](1451)
Abstract:
Climatic characteristics of China-influencing typhoons (CIT) were analyzed in this paper. Main characteristics include: (1) CIT season is May-November, especially from July to September. (2) Frequency of the CIT shows a decreasing trend during 1951-2004, especially after the late period of the 1960s. (3)Strong CIT also shows an obvious decreasing trend. Meanwhile, there exist obvious interdecadal variations in the CIT genesis, being more southward and eastward than normal in 1960s-1970s, and more northward and westward than normal in the 1980s. In addition, the interrelations between CIT and its environmental factors show that CIT has close relationships with sea surface temperature and East Asian summer monsoon; the structure of the circulations in frequent CIT years is much different from that in infrequent CIT years.
COMPARISON OF THE EFFECTS OF ANOMALOUS CONVECTIVE ACTIVITIES IN THE TROPICAL WESTERN PACIFIC ON TWO PERSISTENT HEAVY RAIN EVENTS IN SOUTH CHINA
2008, 14(1): 28-32.
Abstract(1534) PDF [204KB](1462)
Abstract:
The different effects of anomalous convective activities in the tropical western Pacific on two persistent heavy rain events in South China in 2005 and 2006 have been compared in this study. The dataused consist of NOAA Outgoing Longwave Radiation (OLR) data, the NCEP-NCAR reanalysis and precipitation from meteorological stations in South China. Results show that the persistent heavy rain in 2005 was related to the 10-25-day westward propagation of convective activities in the tropical western Pacific from about 150 °E. The physical mechanism is interpreted as a Gill-type response of subtropical anticyclone westward extension during weak convective activities period over the Philippine Sea. Our researches also show that the persistent heavy rain in 2006 has longer period than that in 2005, and the subtropical anticyclone persists westward in the earlier summer which is possibly related to the lasting anomalous strong convective motion in the southern branch of Intertropical Convergence Zone (ITCZ) in the tropic western Pacific. The anomalous convective activities affect the local Hadley circulation over the western Pacific with anomalous ascending motion south of the equator and anomalous descend motion north of it, in favor of the westward extension of the subtropical anticyclone for a long time. Comparison between the two persistent heavy rain events indicates different physical effects of convective activities in the tropical western Pacific, though both effects are helpful to the subtropical anticyclone westward extension as a common character of large-scale circulation backgrounds for persistent heavy rain events in South China.
INTERANNUAL AND INTERDECADAL VARIATIONS OF LARGE-SCALE MOISTURE SINKS OVER GUANGDONG
2008, 14(1): 33-36.
Abstract(1488) PDF [89KB](1405)
Abstract:
The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer.Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.
A NUMERICAL STUDY OF THE EFFECT OF TAIWAN ISLAND TERRAIN ON TYPHOON HAITANG (0505) TRACK
2008, 14(1): 37-40.
Abstract(1795) PDF [183KB](1468)
Abstract:
The track of Typhoon Haitang (0505), which passed through the Taiwan Island and landed again,has been successfully simulated by using the non-hydrostatic mesoscale atmospheric model MM5. Itsstructure is analyzed on the landing stage, and it is found that there exist good relationships between thetyphoon abnormal moving track and its asymmetry structure. The effect of terrain of Taiwan Island on thetyphoon Haitang, which made it rotate before landing and present a "V" type abnormal moving track inTaiwan straits, has also been simulated. Further analysis shows that the terrain of Taiwan Island not onlydirectly affects the typhoon moving track, but also changes the typhoon track by affecting its asymmetricstructure. Therefore, the typhoon asymmetric structure and the effect of terrain of Taiwan Island togetherresults in the abnormal rotating track. The terrain of Taiwan Island tends to increase the SW-NEasymmetric structure of the typhoon and has different effect on SE-NW asymmetric structure during thelandfall process of typhoon Haitang before entering and moving out of the Taiwan straits.
ENSEMBLE PREDICTION EXPERIMENTS OF TRACKS OF TROPICAL CYCLONES BY USING MULTIPLE CUMULUS PARAMETERIZATION SCHEMES
2008, 14(1): 41-44.
Abstract(1608) PDF [45KB](1267)
Abstract:
Ensemble prediction experiments of the tracks of eight tropical cyclones occurring between 2004 -2006 over the western Pacific have been performed by using MM5 with five cumulus parameterizations chemes. The results show that the predictions of the tracks of the tropical cyclones are sensitive to the selection of cumulus parameterization schemes. Each scheme has its own advantage and disadvantage, and the predications without cumulus parameterization schemes are not the worst, sometimes even better than the others. And all of the three ensemble methods improve the predictions of the tracks significantly, among which the ensemble method without parameterization schemes, the Grell, Betts-Miller and Kain-Fritsch schemes are the best.
A STUDY ON THE RELATIONSHIP BETWEEN SPRING SOIL MOISTURE OVER CHINA AND EAST ASIA SUMMER MONSOON
2008, 14(1): 45-48.
Abstract(1453) PDF [148KB](1278)
Abstract:
The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil moisture over southwest China and the Great Bend region of the Yellow River. A standard soil moisture index (SMI) has been defined using the observed soil moisture of the two regions. The results show that SMI has a strong correlation with EASM. The years of strong (weak) SMI are associated with stronger (weaker) summer monsoon circulation. In the years of strong SMI, the west Pacific subtropical high is much northward in position and weaker in intensity; the westerlies zone is also more to the north. All of these make EASM circulation move northward and cause the rainfall belt to relocate to North China and Northeast China. SMI can reflect the variation of the summer rainfall anomaly over eastern China. In the years of strong SMI, the rainfall belt is mainly located over the northem part of China.However, during the weak years, the summer rainfall belt is largely located over the mid- and lower- reaches of the Yangtze River. Additionally, the SMI has obvious oscillations of quasi 4-6 years and quasi 2 years. Moreover, negative SMI predicts EASM better than positive SMI.
NUMERICAL SIMULATION AND MESOSCALE ANALYSIS OF A TORRENTIAL RAIN CAUSED BY TYPHOON
2008, 14(1): 49-52.
Abstract(1656) PDF [928KB](1521)
Abstract:
A heavy storm rainfall caused by Typhoon Acre (No.0418) when landing at Fujian has been successfully simulated by using AREM model. The simulation result is scale-separated by spatial band-pass filtering, which reveals the mesoscale low pressure and convergence line that has direct impact on this rainfall process. The physical characteristics of the two mesoscale systems and their relation with rainfall are also analyzed. Study shows that there exists a well corresponding relationship between the storm rainfall and mesoscale divergence and strong updraft arising from the convergence, which is caused by the interactions between the mesoscate systems and topographic features, and is directly responsible for the rainfall.
A SIMULATION STUDY OF THE INFLUENCE OF LAND FRICTION ON LANDFALL TROPICAL CYCLONE TRACK AND INTENSITY
2008, 14(1): 53-56.
Abstract(1756) PDF [123KB](1229)
Abstract:
A quasi-geostrophic barotropic vorticity equation model is used to simulate the influences of topographic forcing and land friction on landfall tropical cyclone track and intensity. The simulation results show that tropical cyclone track may have sudden deflection when the action of topographic friction dissipation is considered, and sudden deflection of the track is easy to happen and sudden change of tropical cyclone intensity is not clear when the intensity of tropical cyclone is weak and the land friction is strong.The land friction may be an important factor that causes sudden deflection of tropical cyclone track around landfall.
THE FORMATION AND DEVELOPMENT OF A MESOSCALE CONVECTIVE SYSTEM WITH HEAVY RAINFALL ALONG SOUTH CHINA COASTAL AREA
2008, 14(1): 57-60.
Abstract(1364) PDF [391KB](1353)
Abstract:
Observational analysis shows that a Mesoscale Convective System (MCS) occurred on May 13- 14 2004 along the coastal area in South China. The MCS initiated among the southwesterly flows within a west-east orientation low-level shear line. Associated with the system, in its subsequent development stages, no distinct vortex circulation developed in low-level. Instead, a cyclonic flow disturbance was observed in the mid-troposphere. How the convection starts to develop and evolve into a MCS? With observational analysis and numerical simulation, the problem has been studied. The high-resolution MM5 simulation shows that topographic convergence along the coastal line and the nearby mountains in western South China plays an important role to initiate the MCS convection. Once the convection occurs, due to the condensation heating, a cooperative interaction between the preexisting mid-level disturbance and convection is created,which may greatly affect the MCS development during periods when the system continues moving eastward.Compared to some typical MCS that happen in Southern China, which are usually accompanied with upward development of cyclonic vorticity, the development and evolution of the investigated MCS shows distinguishing features. In this article, the physical mechanisms responsible for the intensification of mid- level disturbance are discussed, and a viewpoint to interpret the effects of mid-level disturbance on the MCS organizational development is proposed.
AN EAST ASIAN SUBTROPICAL SUMMER MONSOON INDEX DEFINED BY MOISTURE TRANSPORT
2008, 14(1): 61-64.
Abstract(1445) PDF [501KB](2562)
Abstract:
Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971- 2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere column. Results show that the subtropical summer monsoon index defined by the difference of meridional moisture transport between South China and North China can be used to describe the intensity of the subtropical summer monsoon. High (low) index is corresponding to strong (weak) subtropical summer monsoon. And the new index is well related to the summer rainfall over the middle and lower reaches of Yangtze River. In addition, the convergence of moisture transport from the west Pacific via the South China Sea and that from the North China may be responsible for the anomalously excessive summer rainfall over the middle and lower reaches of Yangtze River.
THE CHARACTERISTICS OF SPATIAL DISTRIBUTION AND TYPES OF APRIL-SEPTEMBER RAINFALL IN THE PEARL RIVER BASIN
2008, 14(1): 65-68.
Abstract(1622) PDF [154KB](1306)
Abstract:
With rainfall data of 51 stations in April-September in the Pearl River basin during 1954-2003, we have applied the Principal Component Analysis method to research the spatial distribution characteristics of April-September rainfall. The results reveal the following. In the Pearl River basin, there is different precipitation varying from 600 mm to 1900 mm in April-September and precipitation decreases gradually from southeast to northwest. The standard deviation distribution decreases gradually from east to west on the whole. The rainfall distribution of the Pearl River basin has five main types: Type Ⅰ:there is flood (drought) in the whole region, Type Ⅱ: there is flood (drought) in the north and drought (flood) in the south, Type Ⅲ: there is flood (drought) in the east and drought (flood) in the west, Type Ⅳ: there id flood (drought) in the central part and drought (flood) in the east and west, and Type Ⅴ: there is flood (drought) in center and drought (flood) in north and south. The types of the flood (drought) in the whole region and flood (drought) in the north and drought (flood) in the south appear much more than the others,being 64% of the total. From the 10-year moving average, it is seen that rainfall between April and September in the Pearl River basin region is mainly dry in 1983-1992, and mainly dry in the east and wet in the west in 1967-1971 and wet in the east and dry in the west in 1979.
PRELIMINARY STUDY ON STRUCTURE OF WINTERTIME TYPHOON NANMADOL IN 2004
2008, 14(1): 69-72.
Abstract(1310) PDF [255KB](1370)
Abstract:
Using NCEP/NCAR reanalysis, the structure of a wintertime typhoon named Nanmadol that landed on Taiwan 4 December, 2004 has been examined in this paper, it is found that Nanmadol looks similar in structure and time evolution to summer typhoons; the central part of it is warm and humid, and the convergence is observed in the lower troposphere while there is divergence in the upper troposphere. The differences between wintertime and summertime typhoons are found. The southwest stream flow in the lower troposphere and cyclonic disturbance in the upper troposphere seem significantly weaker in Nanmadol than in summertime typhoons. The EOF analysis performed for sea level pressure (SLP) of Nanmadol shows that about 90% of the total variance of temporal changes in typhoon circulation can be explained by two leading EOF modes of EOF1 and EOF2. EOF1 shows the structure and intensity variations of Nanmadol while EOF2 shows the changes in environmental SLP distributions that influences the moving direction of Nanmadol.
DIAGNOSTIC ANALYSIS OF A RAINSTORM IN SHANDONG PENINSULA INFLUENCED BY A DISTANT TROPICAL DEPRESSION
2008, 14(1): 73-76.
Abstract(1447) PDF [72KB](1301)
Abstract:
Based on the observational data as well as data of satellite, NCEP reanalysis and moist potential vortex, the heavy rainfall event that occurred away from the outer cycle of tropical depression Kaemi (No.0605) on July 27, 2006 in Shandong Peninsula has been analyzed. The results show that there are three severe convective cloud clusters during the heavy rainfall. The uprightness of coupling pattern between upper-layer jet and low jet and a divergence area, which appeared in the right of upper-layer jet, provided favorable environmental conditions for convective cloud clusters. The strong convective weather happens over the prefrontal warm sector and the storm rainfall mainly distributes in the front of a high-energy area.Positive vorticity distribution and transportation of warm advection in low levels provide dynamic and thermal conditions for the rainstorm. The spatial-temporal evolvements of physical variable fields and MPV2 as the horizontal component of moist potential vorticity show that the rain intensity change is determined by upper and low level jets and the area of MPV2>0 occurs at the front of the low jet cores.
LAND-SEA THERMAL CONTRAST OVER SOUTH ASIA AND ITS INFLUENCES ON TROPICAL MONSOON CIRCULATION
2008, 14(1): 77-80.
Abstract(1480) PDF [326KB](1361)
Abstract:
Based on the NCEP/NCAR reanalysis data, the thermodynamic features and the effect of spatially nonuniform heating on the circulation of the tropical monsoon area in South Asia due to the land- sea distribution have been analyzed, The influences of the subcontinent topography on the Asian tropical circulation are mostly characterized by its thermodynamic effects on low-level circulation, of which the strongest is observed in winter and spring but the relatively weak in summer, followed by the weakest in autumn. The thermodynamic difference between the lndo china Peninsula and Indian Peninsula and its influence on the circulation are regulated by the Tibetan Plateau. During the transitional period from spring to early summer, the Tibetan Plateau thermal forcing generates a large-scale cyclonic circulation in low latitudes in the lower troposphere. As a result, the southerlies/northerlies are increased to the east/west of the Bay of Bengal, Therefore latent heating of the atmosphere is strengthened and the surface sensible heating over the Indochina Peninsula is weakened. On the other hand the surface sensible heating over the Indian Peninsula is increased. It is shown that heating with various scales and different kinds can affect the tropical atmosphere in different ways, which lead to the unique characteristics of the tropical Asian circulation.
IMPACT OF LARGE-SCALE CIRCULATION ON THE INTERDECADAL VARIATIONS OF THE WESTERN NORTH PACIFIC TROPICAL CYCLONE
2008, 14(1): 81-84.
Abstract(1478) PDF [142KB](1350)
Abstract:
Based on the annual frequency data of tropical cyclones from 1960 to 2005 and by the polynomial fit and statistical analysis, this work has discovered that TC activity in the 46a exhibits significant decadal- scale variability. It has two high frequency periods (HFP) and two low frequency periods (LFP). Significant differences in the number of TCs between HFP and LFP are found in active TC seasons from July to October. Differences of large-scale circulation during HFP and LFP have been investigated with NCEP/NOAA data for the season. In HFP, the condition includes not only higher sea surface temperature,lower sea level pressure, larger divergence of upper air, larger relative vorticity at low levels and smaller vertical shear, but also 500-hPa wind vector being more available for TC activity and moving to western North Pacific, the position of the subtropical anticyclone over the western Pacific shifting more northward,and South Asian Anticyclone at 100-hPa being much smaller than that in LFP. The precipitation of western North Pacific has no clear influence on TC activity.
STRUCTURAL AND EVOLUTION CHARACTERISTICS OF THE EASTERLY VORTEX OVER THE TROPICAL REGION
2008, 14(1): 85-88.
Abstract(1404) PDF [318KB](1380)
Abstract:
By employing the NCEP/NCAR reanalysis data sets (1000-10hPa, 2.5°×2.5°), the characteristics have been analyzed of the structure and evolution of an easterly vortex over the tropical upper troposphere relating to the east-west direction shift of the subtropical anticyclone over the Western Pacific Ocean. It is shown that there exists a westward shift simultaneously between the anticyclone and the vortex locating south of it. The anticyclone retreats eastward abnormally while the easterly encounters with the westerly around the same longitudes as they move from the opposite directions. The former is an upper weather system, extending from mid-troposphere to the height of 50 hPa with the center locating on 200 hPa.The vertical thermal distribution illustrates the characteristics of being "warm in the upper layer but cold in the lower layer". The divergence effect and the vertical motion change largely within the east and west sides of the easterly vortex and ascending branch transforms to descending branch near its center.