Article Contents

TROPICAL CYCLONE GENESIS EFFICIENCY:MID-LEVEL VERSUS BOTTOM VORTEX

Funding:

  • Cloud resolving Weather Research and Forecasting (WRF) model simulations are used to investigate tropical cyclone (TC) genesis efficiency in an environment with a near bottom vortex (EBV) and an environment with a mid-level vortex (EMV). Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles. The larger the initial column integrated absolute vorticity, the greater the genesis efficiency is. Given the same column integrated absolute vorticity, a bottom vortex has higher genesis efficiency than a mid-level vortex. A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates. Both the EMV and EBV scenarios share the following development characteristics: 1) a transition from non-organized cumulus-scale (~5 km) convective cells into an organized meso-vortex-scale (~50 to 100 km) system through upscale cascade processes, 2) the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure, and 3) a multiple convective-stratiform phase transition. A genesis efficiency index (GEI) is formulated that includes the following factors: initial column integrated absolute vorticity, vorticity at top of the boundary layer and vertically integrated relative humidity. The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.
  • [1] FU B, LI T, PENG M S, et al. Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001 [J]. Wea. Forecast., 2007, 22(4): 763-780.
    [2] HOLLAND G J. Scale interaction in the western Pacific monsoon [J]. Meteor. Atmos. Phys., 1995, 56: 57-79.
    [3] LI T, FU B, GE X Y, et al. Satellite data analysis and numerical simulation of tropical cyclone formation [J]. Geophys. Res. Lett., 2003, 30(21): 2122, doi: 10.1029/2003GL018556.
    [4] LI T, FU B. Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses [J]. J. Atmos. Sci., 2006, 63(5): 1377-1389.
    [5] GE X Y, LI T, PENG M S. Cyclogenesis simulation of Typhoon Prapiroon (2000) associated with Rossby wave energy dispersion [J]. Mon. Wea. Rev., 2010, 138(1): 42-54.
    [6] CHANG C P, MORRIS V F, WALLACE J M. A statistical study of easterly waves in the western Pacific: July-December 1964 [J]. J. Atmos. Sci., 1970, 27(2): 195-201.
    [7] TAM C Y, LI T. The origin and dispersion characteristics of the observed summertime synoptic-scale waves over the western Pacific [J]. Mon. Wea. Rev., 2006, 134(6): 1630-1646.
    [8] CHANG C P, CHEN J M, HARR P A, et al. Northwestward-propagating wave patterns over the tropical western North Pacific during summer [J]. Mon. Wea. Rev., 1996, 124(10): 2245-2266.
    [9] LAU K H, LAU N C. Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances [J]. Mon. Wea. Rev., 1990, 118(9): 1888-1913.
    [10] BOSART L F, SANDERS F. The Johnstown flood of July 1977: A long-lived convective system [J]. J. Atmos. Sci., 1981, 38(8): 1616-1642.
    [11] ZHANG D L, FRITSCH J M. Numerical simulation of the meso-beta-scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex [J]. J. Atmos. Sci., 1987, 44(18): 2593-2612.
    [12] CHEN S S, FRANK W M. A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics [J]. J. Atmos. Sci., 1993, 50(15): 2401-2426.
    [13] RITCHIE E A, HOLLAND G J. Scale interactions during the formation of Typhoon Irving [J]. Mon. Wea. Rev., 1997, 125(7): 1377-1396.
    [14] SIMPSON J E, RITCHIE E A, HOLLAND G J, et al. Mesoscale interactions in tropical cyclone genesis [J]. Mon. Wea. Rev., 1997, 125(10): 2643-2661.
    [15] BISTER M, EMANUEL K A. The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study [J]. Mon. Wea. Rev., 1997, 125(9): 2662-2682.
    [16] ROGERS R F, FRITSCH J M. Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices [J]. Mon. Wea. Rev., 2001, 129(4): 605-637.
    [17] HOUZE R A, LEE W C, BELL M M. Convective Contribution to the Genesis of Hurricane Ophelia (2005) [J]. Mon. Wea. Rev., 2009, 137(9): 2778-2800.
    [18] HENDRICKS E A, MONTGOMERY M T, DAVIS C A. The role of vortical hot towers in the formation of Tropical Cyclone Diana (1984) [J]. J. Atmos. Sci., 2004, 61: 1209-1232.
    [19] REASOR P D, MONTGOMERY M T, BOSART L F. Mesoscale observations of the genesis of Hurricane Dolly (1996) [J]. J. Atmos. Sci., 2005, 62(9): 3151-3171.
    [20] MONTGOMERY M T, NICHOLLS M E, CRAM T A, et al. A vortical hot tower route to tropical cyclogenesis [J]. J. Atmos. Sci., 2006, 63(5): 355-386.
    [21] LIN Y L, RARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model [J]. J. Appl. Meteor., 1983, 22(6): 1065-1092.
    [22] NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data [J]. Bound.-Layer Meteor., 2003, 107: 401-427.
    [23] HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation [J]. Mon. Wea. Rev., 2004, 132(1): 103-120.
    [24] HOLLAND G J. The maximum potential intensity of tropical cyclones [J]. J. Atmos. Sci., 1997, 54(21): 2519-2541.
    [25] ZHOU X Q, WANG B. From concentric eyewall to annular hurricane: A numerical study with the cloud-resolved WRF model [J]. Geophys. Res. Lett., 2009, 36, L03802, doi:10.1029/2008GL036854.
    [26] NOLAN D S. What is the trigger for tropical cyclogenesis?[J] Aust. Meteor. Mag., 2007, 56: 241-266.
    [27] YUTER S E, HOUZE R A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity [J]. Mon. Wea. Rev., 1995, 123(7): 1941-1963.
    [28] SCHECTER D A, DUBIN D H. Vortex motion driven by a background vorticity gradient [J]. Phys. Rev. Lett., 1999, 83: 2191-2194.
    [29] HACK J J, SCHUBERT W H. Nonlinear response of atmospheric vortices to heating by organized cumulus convection [J]. J. Atmos. Sci., 1986, 43(15): 1559-1573.
    [30] TORY K J, MONTGOMERGY M T, DAVIDSON N E. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection [J]. J. Atmos. Sci., 2006, 63(12): 3077-3090.
    [31] TORY K J, MONTGOMERGY M T, DAVIDSON N E, et al. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of tropical cyclone Chris formation [J]. J. Atmos. Sci., 2006, 63(12): 3091-3113.
    [32] KUO H C, LIN L Y, CHANG C P, et al. The formation of concentric vorticity structure in typhoon [J]. J. Atmos. Sci., 2004, 61(22): 2722-2734.
    [33] EMANUEL K A, NOLAN D S. Tropical cyclones and the global climate system [M]. Preprints, 26th Conference on Hurricanes and Tropical Meteorology, Miami, Florida. 2004.
    [34] HOUZE, R A. Cloud Dynamics [M]. San Diego: Academic Press, 1993: 573.
    [35] LI T, GE X Y, WANG B, et al. Tropical cyclogenesis associated with Rossby wave energy dispersion of a pre-existing Typhoon. Part II: numerical simulations [J]. J. Atmos. Sci., 2006, 63(5): 1390-1409.
    [36] LEE C S, CHEUNG K W, HUI J N, et al. Mesoscale features associated with tropical cyclone formations in the Western North Pacific [J]. Mon. Wea. Rev., 2008, 136(6): 2006-2022.
    [37] ZEHR R. Tropical cyclogenesis in the Western North Pacific [R]. NOAA Tech. Rep., NESDIS, 1992, 61: pp181.

Get Citation+

GE Xu-yang, Tim LI, Melinda S. PENG. TROPICAL CYCLONE GENESIS EFFICIENCY:MID-LEVEL VERSUS BOTTOM VORTEX [J]. Journal of Tropical Meteorology, 2013, 19(3): 197-213.
GE Xu-yang, Tim LI, Melinda S. PENG. TROPICAL CYCLONE GENESIS EFFICIENCY:MID-LEVEL VERSUS BOTTOM VORTEX [J]. Journal of Tropical Meteorology, 2013, 19(3): 197-213.
Export:  

Share Article

Manuscript History

Manuscript received: 28 April 2012
Manuscript revised: 21 May 2013
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

TROPICAL CYCLONE GENESIS EFFICIENCY:MID-LEVEL VERSUS BOTTOM VORTEX

Abstract: Cloud resolving Weather Research and Forecasting (WRF) model simulations are used to investigate tropical cyclone (TC) genesis efficiency in an environment with a near bottom vortex (EBV) and an environment with a mid-level vortex (EMV). Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles. The larger the initial column integrated absolute vorticity, the greater the genesis efficiency is. Given the same column integrated absolute vorticity, a bottom vortex has higher genesis efficiency than a mid-level vortex. A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates. Both the EMV and EBV scenarios share the following development characteristics: 1) a transition from non-organized cumulus-scale (~5 km) convective cells into an organized meso-vortex-scale (~50 to 100 km) system through upscale cascade processes, 2) the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure, and 3) a multiple convective-stratiform phase transition. A genesis efficiency index (GEI) is formulated that includes the following factors: initial column integrated absolute vorticity, vorticity at top of the boundary layer and vertically integrated relative humidity. The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.

GE Xu-yang, Tim LI, Melinda S. PENG. TROPICAL CYCLONE GENESIS EFFICIENCY:MID-LEVEL VERSUS BOTTOM VORTEX [J]. Journal of Tropical Meteorology, 2013, 19(3): 197-213.
Citation: GE Xu-yang, Tim LI, Melinda S. PENG. TROPICAL CYCLONE GENESIS EFFICIENCY:MID-LEVEL VERSUS BOTTOM VORTEX [J]. Journal of Tropical Meteorology, 2013, 19(3): 197-213.
Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return