Article Contents

Improved Analyses and Forecasts With AIRS Temperature Retrievals Using the Local Ensemble Transform Kalman Filter

Funding:

  • In this paper we investigate the impact of the Atmospheric Infra-Red Sounder (AIRS) temperature retrievals on data assimilation and the resulting forecasts using the four-dimensional Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme and a reduced resolution version of the NCEP Global Forecast System (GFS). Our results indicate that the AIRS temperature retrievals have a significant and consistent positive impact in the Southern Hemispheric extratropics on both analyses and forecasts, which is found not only in the temperature field but also in other variables. In tropics and the Northern Hemispheric extratropics these impacts are smaller, but are still generally positive or neutral.
  • [1] HUNT B R, KOSTELICH E J, SZUNYOGH I. EfficientData Assimilation for Spatiotemporal Chaos: a Local EnsembleTransform Kalman Filter [J]. Physica D, 2007, 230: 112-126.
    [2] TIPPETT M K, ANDERSON J L, BISHOP C H, HAMILLT M, WHITAKER J S. Ensemble square root filters [J]. Mon.Wea. Rev., 2003, 131: 1 485-1 490.
    [3] BISHOP, C H, ETHERTON B J, MAJUMDAR S J.Adaptive Sampling with the Ensemble Transform KalmanFilter. Part I: Theoretical Aspects [J]. Mon. Wea. Rev., 2001,129: 420-436.
    [4] OTT E, HUNT B R, SZUNYOGH I, ZIMIN A V, et al. Alocal ensemble Kalman filter for atmospheric data assimilation[J]. Tellus, 2004, 56A: 415-428.
    [5] ANDERSON, J L. An ensemble adjustment Kalman filterfor data assimilation [J]. Mon. Wea. Rev., 2001, 129: 2 884-2903.
    [6] WHITAKER J S, COMPO G P, WEI X, et al. Reanalysiswithout radiosondes using ensemble data assimilation [J]. Mon.Wea. Rev., 2004, 132: 1 190-1 200.
    [7] SZUNYOGH I, KOSTELICH E J, GYARMATI G, et al.Assessing a Local Ensemble Kalman Filter: Perfect modelexperiments with the NCEP global model [J]. Tellus, 2005,57A: 528-545.
    [8] LIU J, FERTIG E, LI H, et al. Comparison between LocalEnsemble Transform Kalman Filter and PSAS in NASA finitevolume GCM-perfect model experiments [J]. NonlinearProcesses Geophy., 2008, 15: 645-659.
    [9] SZUNYOGH I, KOSTELICH E J, GYARMATI G, et al. Alocal ensemble transform Kalman data assimilation system forthe NCEP global model [J]. Tellus, 2008, 60A: 113-130.
    [10] LE MARSHALL J, JUNG J, DERBER J, et al. Improvingglobal analysis and forecasting with AIRS [J]. Bull. Amer.Meteor. Soc., 2006, 87: 891-894.
    [11] ATLAS R. The impact of AIRS data on weather prediction[M]// Proc. SPIE Conf. Algorithms Technol. MultispectralHyperspectral Ultraspectral Imagery XI, 2005, 5806: 599-606.
    [12] HUNT B R, KALNAY E, KOSTELICH E J, et al.Four-dimensional ensemble Kalman filtering [J]. Tellus, 2004,56A: 273-277.
    [13] HARLIM J, HUNT B R. Four-dimensional local ensembletransform Kalman filter: numerical experiments with a globalcirculation model [J]. Tellus, 2007, 59A: 731-748.
    [14] SUSSKIND J, BARNET C D, BLAISDELl J M. Retrievalof atmospheric and surface parameters from AIRS/AMSU/HSBdata in the presence of clouds [J]. IEEE Trans. Geosci. RemoteSens. 2003, 41: 390-409.
    [15] SUSSKIND J, BARNET C D, BLAISDELL J M, et al.Accuracy of geophysical parameters derived from AtmosphericInfrared Sounder/Advanced Microwave Sounding Unit as afunction of fractional cloud cover [J]. J. Geophys. Res. 2006,111: doi:10.1029/2005JD006272.
    [16] JOINER J, DA SILVA A M. Efficient methods toassimilate remotely sensed data based on information content[J]. Quart. J. Roy. Meteor. Soc., 1998, 124: 1 669-1 694.
    [17] DESROZIERS G, BERRE L, CHAPNIK B, et al.Diagnosis of observation, background and analysis errorstatistics in observation space [J]. Quart. J. Roy. Meteor. Soc.,2005, 131: 3 385-3 396.
    [18] LI H, KALNAY E, MIYOSHI T. Simultaneous estimationof covariance inflation and observation errors within ensembleKalman filter [J]. Quart. J. Roy. Meteor. Soc., 2009, 135:523-533.

Get Citation+

LI Hong, LIU Jun-jie, Elana FERTIG, et al. Improved Analyses and Forecasts With AIRS Temperature Retrievals Using the Local Ensemble Transform Kalman Filter [J]. Journal of Tropical Meteorology, 2011, 17(1): 43-49.
LI Hong, LIU Jun-jie, Elana FERTIG, et al. Improved Analyses and Forecasts With AIRS Temperature Retrievals Using the Local Ensemble Transform Kalman Filter [J]. Journal of Tropical Meteorology, 2011, 17(1): 43-49.
Export:  

Share Article

Manuscript History

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Improved Analyses and Forecasts With AIRS Temperature Retrievals Using the Local Ensemble Transform Kalman Filter

Abstract: In this paper we investigate the impact of the Atmospheric Infra-Red Sounder (AIRS) temperature retrievals on data assimilation and the resulting forecasts using the four-dimensional Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme and a reduced resolution version of the NCEP Global Forecast System (GFS). Our results indicate that the AIRS temperature retrievals have a significant and consistent positive impact in the Southern Hemispheric extratropics on both analyses and forecasts, which is found not only in the temperature field but also in other variables. In tropics and the Northern Hemispheric extratropics these impacts are smaller, but are still generally positive or neutral.

LI Hong, LIU Jun-jie, Elana FERTIG, et al. Improved Analyses and Forecasts With AIRS Temperature Retrievals Using the Local Ensemble Transform Kalman Filter [J]. Journal of Tropical Meteorology, 2011, 17(1): 43-49.
Citation: LI Hong, LIU Jun-jie, Elana FERTIG, et al. Improved Analyses and Forecasts With AIRS Temperature Retrievals Using the Local Ensemble Transform Kalman Filter [J]. Journal of Tropical Meteorology, 2011, 17(1): 43-49.
Reference (18)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return