[1]
|
RINEHART R E, GARVEY E T. Three-dimensional stormmotion detection by conventional weather radar [J]. Nature,1978, 273: 287-289. |
[2]
|
LI L, SCHMID W, JOSS J. Nowcasting of motion andgrowth of precipitation with radar over a complex orography[J]. J. Appl. Meteor., 1995, 34(6): 1 286-1 300. |
[3]
|
CRANE R K. Automatic cell detection and tracking. [J].IEEE Transact. on Geosci. Electron., 1979, 17(4): 250-262. |
[4]
|
ROSENFELD D. Objective method for analysis andtracking of convective cells as seen by radar [J]. J. Atmos.Ocean. Technol., 1987, 4(3): 422-434. |
[5]
|
HANDWERKER J. Cell tracking with TRACE3D―A newalgorithm [J]. Atmos. Res., 2002, 61(1): 15-34. |
[6]
|
DIXON M J, WIENER G. TITAN: Thunderstormidentification, tracking, analysis and nowcasting-a radar basedmethodology [J]. J. Atmos. Ocean. Technol., 1993, 10(6):785-797. |
[7]
|
JOHNSON J T, MACKEEN P L, WITT A, et al. The Stormcell identification and tracking algorithm: An enhancedWSR-88D algorithm [J]. Weather and Forecasting, 1998, 13(2):263-276. |
[8]
|
XIAO Yan-jiao, TANG Da-zhang, LI Zhong-hua, et al.Storm automatic identification, tracking and forcasting [J]. J.Nanjing Inst. Meteor., 1998, 21(2): 223-229. |
[9]
|
LI Wen-hui. Application of Hungary algorithm inassignment problem of train crew [J]. J. Lanzhou Commun.Univ. (Nat. Sci.), 2007, 26(3): 55-57. |
[10]
|
LAWLER E L. Combinatorial Optimization: Networksand Matroids [M]. Oxford: Oxford University Press, 1995:384. |
[11]
|
ROBERTS F S. Applied Combinatorics [M]. PrenticeHall, 1984: 565-568. |
[12]
|
CHU Yan-zheng. Improvement of Hungarian method insolving designation problems [J]. J. Chongqing Inst. Technol.Manage., 1998, 12(4): 76-77. |
[13]
|
GU Da-quan, ZUO Li, HOU Tai-ping, et al. Existing problem and improvement of “Hungary Arithmetic” [J].Microcom. Develop., 2003, 13(4): 76-78. |
[14]
|
XING Wen-xun, XIE Jin-xing. Modern OptimizationAlgorithms [M], Beijing: Tsinghua University Press, 2005:247. |
[15]
|
DUAN Cha-li, CHEN Bo. Simulated annealing algorithmto solve assignment problem under VB [J]. Comput. Knowl.Technol., 2008, 4(8): 2 153-2 155. |
[16]
|
WU Yan-qun, DONG Peng. A general simulatedannealing algorithm for solving large scale asymmetricalassignment problem [J]. J. Lanzhou Commun. Univ., 2008,27(4): 149-155. |
[17]
|
LI Yan, CHEN Zu-an, XU Yue-fei, et al. Research ongenetic algorithm for assignment problem and its realization[J]. J. Xi’an Univ. Technol., 1996, 12(4): 271-276. |
[18]
|
ZHANG Quan, XIU Hong-wei. Application of the geneticalgorithm in the assignment problem [J]. J. Shenyang Architect.Civil Eng. Inst., 1997, 13(1): 25-28. |
[19]
|
WU Hai-jun. Solving assignment problem based ongenetic algorithm [J]. Comput. Study, 2005, 6: 23-24. |
[20]
|
RUDOLPH G. Convergence Properties of CanonicalGenetic Algorithms [J]. IEEE Trans. on Neural Network, 1994,5(1): 96-101. |
[21]
|
DE JONG K A. An Analysis of the Behavior of a Class ofGenetic Adaptive Systems [D]. Theses for Doctoral Degree,Ann Arbor: University of Michigan, 1975: 1-266. |
[22]
|
EIBEN A E, AARTS E H, VAN HEE K M. Globalconvergence of genetic algorithms: A Markov chain analysis[C]//Parallel Problem Solving from Nature. Berlin: Springer,1991: 3-12. |
[23]
|
WANG Lei, SHEN Ting-zhi, ZHAO Yang. An improvedadaptive genetic algorithm [J]. Syst. Eng. Electron., 24(5):75-78. |
[24]
|
YIN Ren-kun, WU Yang, ZHANG Jing-wei. Research andapplication of the ant colony algorithm in the assignmentproblem [J]. Comput. Eng. Sci., 2008, 30(4): 43-112. |
[25]
|
HAN Jian-feng, LI Min-qiang, KOU Ji-song. Encodingschemes of array problem in genetic algorithms [J]. Comput.Eng. Sci., 2002, 12: 29-32. |