Article Contents

DOMINANT PHYSICAL PROCESSES ASSOCIATED WITH PHASE DIFFERENCES BETWEEN SURFACE RAINFALL AND CONVECTIVE AVAILABLE POTENTIAL ENERGY

Funding:

  • A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions, water vapor convergence, and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions, vapor condensation and depositions, water vapor storage, and heat divergence over raining stratiform regions.
  • [1] ARAKAWA A, SCHUBERT W H. Interaction of acumulus cloud ensemble with the large-scale environment.Part I [J]. J. Atmos. Sci., 1974, 31: 674-701.
    [2] BETTS A K, MILLER M J. A new convective adjustmentscheme. Part II: Single column tests using GATE wave,BOMEX, ATEX and Artic airmass data set [J]. Quart. J. Roy.Meteor. Soc., 1986, 112: 692-709.
    [3] RANDALL D A, PAN D M. Implementation of theArakawa-Schubert cumulus parameterization with a prognosticclosure. [J]. Meteor. Monogr., Amer. Meteor. Soc., 1993, 46:137-144.
    [4] XU K M, RANDALL D A. Explicit simulation of cumulusensembles with the GATE Phase III data: Comparison withobservations [J]. J. Atmos. Sci., 1996, 53: 3710-3736.
    [5] LI X, SUI C H, LAU K M. Interactions between tropicalconvection and its embedding environment: An energeticsanalysis of a 2-D cloud resolving simulation [J]. J. Atmos. Sci.,2002, 59: 1712-1722.
    [6] GAO S, CUI X, ZHOU Y, et al. Surface rainfall processesas simulated in a cloud resolving model [J]. J. Geophys. Res.,2005, 110, D10202, doi: 10.1029/2004JD005467.
    [7] GAO S, LI X. Precipitation equations and theirapplications to the analysis of diurnal variation of tropicaloceanic rainfall [J]. J. Geophys. Res., 2009, revised.
    [8] LI X, SUI C H, LAU K M. Precipitation efficiency in thetropical deep convective regime: A 2-D cloud resolvingmodeling study [J]. J. Meteor. Soc. Japan, 2002, 80: 205-212.
    [9] WELLER R A, ANDERSON S P. Surface meteorology andair-sea fluxes in the western equatorial Pacific warm poolduring TOGA COARE [J]. J. Climate, 1996, 9: 1959-1990.
    [10] LI X, SUI C H, LAU K M. Dominant cloud microphysicalprocesses in a tropical oceanic convective system: A 2-D cloudresolving modeling study [J]. Mon. Wea. Rev. 2002, 130:2481-2491.
    [11] ZHOU Y, CUI X, LI X. Contribution of cloud condensateto Surface rain rate [J]. Prog. Nat. Sci., 2006, 16: 967-973.
    [12] CUI X, LI X. Role of surface evaporation in surfacerainfall processes [J]. J. Geophys. Res. 2006, 111, D17112,doi: 10.1029/2005JD006876.
    [13] SUI C H, Li X, YANG M J, et al. Estimation of oceanicprecipitation efficiency in cloud models [J]. J. Atmos. Sci.,2005, 62: 4358-4370.
    [14] SUI C H, LI X, YANG M J. On the definition ofprecipitation efficiency [J]. J. Atmos. Sci., 2007, 64:4506-4513.
    [15] GAO S, PING F, LI X, et al. A convective vorticity vectorassociated with tropical convection: A 2D cloud-resolvingmodeling study [J]. J. Geophys. Res., 2004, 109, D14106, doi:10.1029/2004JD004807.
    [16] GAO S, CUI X, ZHOU Y, et al. A modeling study ofmoist and dynamic vorticity vectors associated with 2Dtropical convection [J]. J. Geophys. Res., 2005, 110, D17104,doi: 10.1029/2004JD005675.
    [17] GAO S, RAN L, LI X. Impacts of ice microphysics onrainfall and thermodynamic processes in the tropical deepconvective regime: A 2D cloud-resolving modeling study [J].Mon. Wea. Rev., 2006, 134: 3015-3024.
    [18] GAO S, Ping F, Li X. Tropical heat/waterquasi-equilibrium and cycle as simulated in a 2D cloudresolving model [J]. Atmos. Res., 2006, 79:15-29.
    [19] GAO S, LI X. Responses of tropical deep convectiveprecipitation systems and their associated convective andstratiform regions to the large-scale forcing [J]. Quart. J. Roy.Meteor. Soc, 2008, 134: 2127-2141.
    [20] PING F, LUO Z, LI X. Kinematics, Cloud microphysics,and spatial structures of tropical cloud clusters: Atwo-dimensional cloud-resolving modeling study [J]. Atmos.Res., 2008, 88: 323-336.
    [21] GAO S, CUI X, LI X. A modeling study of diurnalrainfall variations during the 21-day period of TOGA COARE[J]. Adv. Atmos. Sci., 2009, 26: 895-905.
    [22] SUI C H, LI X. A tendency of cloud ratio associated withthe development of tropical water and ice clouds [J]. Terr.Atmos. Oceanic Sci., 2005, 16: 419-434.
    [23] CUI X, ZHOU Y, LI X. Cloud microphysical properties intropical convective and stratiform regions [J]. Meteor. Atmos.Phys., 2007, 98: 1-11.
    [24] SUI C H, TSAY C T, LI X. Convective stratiform rainfallseparation by cloud content [J]. J. Geophys. Res., 2007, 112,D14213, doi:10.1029/2006JD008082.
    [25] GAO S, LI X. Cloud-resolving modeling of convectiveprocesses [M]. Dordrecht: Springer Press, 2008, 206 pp.
    [26] WANG D, LI X, TAO W K, et al. Effects of vertical windshear on convective development during a landfall of severetropical storm Bilis (2006) [J]. Atmos. Res., 2009, 94:270-275.
    [27] WANG D, LI X, TAO W K. Cloud radiative effects onresponses of convective and stratiform rainfall to large-scaleforcing [J]. Atmos. Res., 2009, submitted.
    [28] LI X, ZHANG S, ZHANG D L. Thermodynamic, cloudmicrophysics and rainfall responses to initial moistureperturbations in the tropical deep convective regime [J]. J.Geophys. Res., 2006, 111, D14207,doi:10.1029/2005JD006968.
    [29] GAO S, LI X. Impacts of initial conditions oncloud-resolving simulations [J]. Adv. Atmos. Sci., 2008, 25:737-747.
    [30] GAO S, LI X. Dependence of the accuracy ofprecipitation and cloud simulation on time and spatial scales[J]. Adv. Atmos. Sci., 2009, in press.
    [31] LI X, SHEN X. Sensitivity of cloud-resolvingprecipitation simulations to uncertainty of vertical structuresof initial conditions [J]. Quart. J. Roy. Meteor. Soc., 2009,Revised.
    [32] GAO S, ZHOU Y, LI X. Effects of diurnal variations ontropical equilibrium states: A two-dimensional cloud-resolvingmodeling study [J]. J. Atmos. Sci., 2007, 64: 656-664.
    [33] GAO S. A cloud-resolving modeling study of cloudradiative effects on tropical equilibrium states [J]. J. Geophys.Res., 2008, 113, D03108, doi: 10.1029/2007JD009177.
    [34] PING F, LUO Z, LI X. Microphysical and radiativeeffects of ice microphysics on tropical equilibrium states: Atwo-dimensional cloud-resolving modeling study [J]. Mon.Wea. Rev., 2007, 135: 2794-2802.
    [35] ZHOU Y, Li X. Sensitivity of convective and stratiformrainfall to sea surface temperature [J]. Atmos. Res., 2009, 92:212-219.
    [36] CUI X. A cloud-resolving modeling study of diurnalvariations of tropical convective and stratiform rainfall [J]. J.Geophys. Res., 2008, 113, D02113, doi:10.1029/2007JD008990.
    [37] CUI X, LI X. Diurnal responses of tropical convective andstratiform rainfall to diurnally varying sea surface temperature[J]. Meteor. Atmos. Phys., 2009, 104: 53-61.
    [38] TAO W K, SIMPSON J, SUI C H, et al. Heating,moisture and water budgets of tropical and midlatitude squalllines: Comparisons and sensitivity to longwave radiation [J]. J.Atmos. Sci., 1993, 50: 673-690.
    [39] SUI C H, LAU K M, TAO W K, et al. The tropical waterand energy cycles in a cumulus ensemble model. Part I:Equilibrium climate [J]. J. Atmos. Sci., 1994, 51: 711-728.
    [40] CHONG M, HAUSER D. A tropical squall line observedduring the CORT 81 experiment in West Africa. Part II: Waterbudget [J]. Mon. Wea. Rev., 1989, 117: 728-744.
    [41] GALLUS W A Jr., JOHNSON R H. Heat and moisturebudgets of an intense midlatitude squall line [J]. J. Atmos. Sci.,1991, 48: 122-146.
    [42] RUTLEDGE S A, Hobbs P V. The mesoscale andmicroscale structure and organization of clouds andprecipitation in midlatitude cyclones. Part VIII: A model forthe "seeder-feeder" process in warm-frontal rainbands [J]. J.Atmos. Sci., 1983, 40: 1185-1206.
    [43] RUTLEDGE S A, HOBBS P V. The mesoscale andmicroscale structure and organization of clouds andprecipitation in midlatitude cyclones. Part XII: A diagnosticmodeling study of precipitation development in narrowcold-frontal rainbands [J]. J. Atmos. Sci., 1984, 41:2949-2972.
    [44] LIN Y L, FARLEY R D, ORVILLE H D. Bulkparameterization of the snow field in a cloud model [J]. J.Climate Appl. Meteor., 1983, 22: 1065-1092.
    [45] TAO W K, SIMPSON J, McCUMBER M. An ice-watersaturation adjustment [J]. Mon. Wea. Rev., 1989, 117:231-235.
    [46] KRUEGER S K, FU Q, LIOU K N, et al. Improvement ofan ice-phase microphysics parameterization for use innumerical simulations of tropical convection [J]. J. Appl.Meteor., 1995, 34: 281-287.

Get Citation+

Xiaofan LI. DOMINANT PHYSICAL PROCESSES ASSOCIATED WITH PHASE DIFFERENCES BETWEEN SURFACE RAINFALL AND CONVECTIVE AVAILABLE POTENTIAL ENERGY [J]. Journal of Tropical Meteorology, 2009, (2): 148-154.
Xiaofan LI. DOMINANT PHYSICAL PROCESSES ASSOCIATED WITH PHASE DIFFERENCES BETWEEN SURFACE RAINFALL AND CONVECTIVE AVAILABLE POTENTIAL ENERGY [J]. Journal of Tropical Meteorology, 2009, (2): 148-154.
Export:  

Share Article

Manuscript History

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

DOMINANT PHYSICAL PROCESSES ASSOCIATED WITH PHASE DIFFERENCES BETWEEN SURFACE RAINFALL AND CONVECTIVE AVAILABLE POTENTIAL ENERGY

Abstract: A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions, water vapor convergence, and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions, vapor condensation and depositions, water vapor storage, and heat divergence over raining stratiform regions.

Xiaofan LI. DOMINANT PHYSICAL PROCESSES ASSOCIATED WITH PHASE DIFFERENCES BETWEEN SURFACE RAINFALL AND CONVECTIVE AVAILABLE POTENTIAL ENERGY [J]. Journal of Tropical Meteorology, 2009, (2): 148-154.
Citation: Xiaofan LI. DOMINANT PHYSICAL PROCESSES ASSOCIATED WITH PHASE DIFFERENCES BETWEEN SURFACE RAINFALL AND CONVECTIVE AVAILABLE POTENTIAL ENERGY [J]. Journal of Tropical Meteorology, 2009, (2): 148-154.
Reference (46)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return