[1]
|
HU Jian-lin, TU Song-bo, FENG Guang-liu. Anexploration of heavy rain forecasting technique based onartificial neural networks [J]. J. Trop. Meteor., 2003, 19(4):422-428. |
[2]
|
HSIEH W W. Nonlinear canonical correlation analysis ofthe tropical Pacific climate variability using Neural NetworkApproach [J]. J. Climate, 2001, 14(12): 2528-2539. |
[3]
|
GIORGIO C, GIOGIO G. Coupling Fuzzy Modeling andNeural Networks for River Flood Prediction [J]. IEEETransactions on Systems, Man, and Cybernetic-Part C:Applications and Reviews, 2005, 25(3): 382-388. |
[4]
|
WU Jian-sheng, JIN Long, WANG Ling-zhi. The backpropagation neural network meteorological forecast modelresearch evolved and designed by genetic algorithms [J]. J.Trop. Meteor., 2006, 22(4): 411-416. |
[5]
|
HE Hui, JIN Long, QING Zhi-nian, et al. Downscalingforecast for the monthly precipitation over Guangxi based onthe BP neural network model [J]. J. Trop. Meteor., 2007, 23(1):72-77. |
[6]
|
JIN Long, KUANG Xue-yuan, et al. Study on theover-fitting of the artificial neural network forecasting model[J]. Acta Meteor. Sinica, 2004, 62(1): 62-69. |
[7]
|
HANSEN L K, SALAMON P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1990, 12(10): 993-1001. |
[8]
|
SOLLICH P, KROGH A. Learning with Ensembles: HowOver-fitting can be useful [C]// Advances in NeuralInformation Processing Systems 8, Cambridge: MIT Press,1996: 190-196. |
[9]
|
ZHOU Zhi-hua, CHEN Shi-fu. Neural network ensemble[J]. Chin. J. Comput., 2002, 25(1): 1-8. |
[10]
|
MAO J. A case study on bagging boosting and basicensembles of neural networks for OCR [C]// ProcessingInternational Joint Conference on Neural Networks 1998.Anchorage: International Joint Conference on NeuralNetworks, 1998: 1828-1833. |
[11]
|
GUTTA S, WECHSLER H. Face recognition using hybridclassifier systems [C]// Proceeding International JointConference on Neural Networks 1996. Washington DC: 1996:1017-1022. |
[12]
|
SOLLICH P, INTRATOR N. Classification of seismicsignals by integrating ensembles of neural networks [J]. IEEETrans. Signal Process., 1998, 46(5): 1194-1021. |
[13]
|
LI NING, ZHOU HUA-JIE, LING JIN-JIANG, et al.Speculated lesion detection in digital mammogram based onartificial neural network ensemble [J]. Adv. Neural NetworksISNN, Springer Press, 2005, 3: 790-795. |
[14]
|
BONABEAU E, DORIGO M, THERAULAZ G.Inspiration for optimization from social insect behavior [J].Nature, 2000, 406(6): 39-42. |
[15]
|
XIAOHUI H, EBERHART R. Multi-objectiveoptimization using dynamic neighborhood particle swarmoptimization [C]// Proceeding of Congress on EvolutionaryComputation. Hawaii: Congress on Evolutionary Computation,2002: 1677-1681. |
[16]
|
RIGET J, VESTERSTROM J S. A diversity-guidedparticle swarm optimizer-the ARPSO [R]. Technical Report2002-02, Department of Computer Science, University ofAarhus, 2002. |
[17]
|
MA Zhen-hua. Operations Research and OptimizingTheory [M]. Beijing: Tsinghua Press. 1998, 235-425. |
[18]
|
VAUTARD. SSA: a toolkit for noisy chaotic signals [J].Physical D, 1992, 58: 95-126. |
[19]
|
WEI Feng-ying, CHAO Hong-xing. The MathematicsForecast Model and Application of Long Period Time [M].Beijing:Meteorological Press, 1990. |
[20]
|
WANG Hui-weng. The Model and Application of PartialLeast-Squares Regression [M]. Beijing: National DefensesScience and Technology University Press, 1999, 258-365. |