ISSN 1006-8775CN 44-1409/P

RESEARCH ON AUTOMATIC FOG IDENTIFICATION TECHNOLOGY BY METEOROLOGICAL SATELLITE REMOTE SENSING


  • There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.
  • [1]
    GURKA J J, OLIVER V J. Fog persistence under a cirrus band [J]. Mon. Wea. Rev., 1974, 102: 869-870.
    [2]
    GUSTAFSON A V, WASSERMAN S E. Use of satellite information in observing and forecasting fog dissipation and cloud formation [J]. Mon. Wea. Rev., 1976, 104: 323-324.
    [3]
    GURKA J J. The role of inward mixing in the dissipation of fog and stratus [J]. Mon. Wea. Rev., 1978, 106: 1633-1635.
    [4]
    EYRE J R, BROWNSCOMBE J L, ALLAM R J. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery [J]. Meteor. Mag., 1984, 113: 266-271.
    [5]
    TURNER J, ALLAM R J, MAINE D R. A case study of the detection of fog at night using channels 3 and 4 on the Advanced Very High Resolution Radiometer (AVHRR) [J]. Meteor. Mag., 1986, 115: 285-297.
    [6]
    KUDOH J, NOGUCHI S. Identification of fog with NOAA AVHRR images [J]. Geosci. Remote Sens., IEEE Transactions on Geoscience and Remote Sensing, 1991: 704-709.
    [7]
    BENDIX J. Determination of fog horizontal visibility by means of NOAA-AVHRR [C]// IEEE 1995 International Geoscience and Remote Sensing Symposium (IGARSS'95), Piscataway, 1995, 3: 1847-1849.
    [8]
    ELLROD G P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery [J]. Wea. Forec., 1995, 10: 606-619.
    [9]
    THOMAS F L, TURK F J, RICHARDSON K. Stratus and fog products using GOES-8-9 3.9μm data [J]. Wea. Forec., 1997, 12: 664-677.
    [10]
    BENDIX J, BERTHMANN F, REUDENBACH C. NOAA-AVHRR and 4D GIS - towards a more realistic view of fog clearance [C]// IEEE 1999 International Geoscience and Remote Sensing Symposium (IGARSS'99), Hamburg, 1999: 2235-2237.
    [11]
    ERASMUS D A. The application of Satellite and Global Meteorological Model data to Monitoring and Forecasting of Moisture and Cloud at Remote Sites in Northern Chile [C]// Sixth International Conference on Southern Hemisphere Meteorology and Oceanography, 1999.
    [12]
    BENDIX J, BERTHMANN F, REUDENBACH C. NOAA-AVHRR and 4D GIS-towards a more realistic view of fog clearance [C]. Geoscience Remote Sensing Symposium, IGARSS '99 Proceedings. IEEE 1999 International, 1999, 4: 2235-2237.
    [13]
    ROSENFELD D, CATTANI Elsa, MELANI S, LEVIZZANI V. Considerations on daylight operation of 1.6-versus 3.7-μm channel on NOAA and Metop satellites [J]. Bull. Am. Meteor. Soc., 2004, 85(6): 873-881.
    [14]
    UNDERWOOD S J, ELLROD G P, KUHNERT A L. A multiple-case analysis of nocturnal radiation-fog development in the central valley of California utilizing the goes nighttime fog product [J]. Appl. Meteor., 2004, 43(2): 297-311.
    [15]
    BACHMANN M, BENDIX J. Fog studies in the Alpine region with NOAA/AVHRR [C]. Geoscience and Remote Sensing Symposium, 1991. IGARSS '91'Remote Sensing: Global Monitoring for Earth Management, 1991: 1713-1716.
    [16]
    BENDIX J, THIES B, NAUSS T, et al. A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS over land [J]. Meteor. Appl., 2006, 13(2): 111-125.
    [17]
    LIU Jian, XU Jian-ming, FANG Zong-yi. Analyse the scale characteristics of particle on the top of could and fog by the use of AVHRR data of NOAA [J]. J. Appl. Meteor. Sci., 1999, 10(1): 28-33.
    [18]
    JU Wei-min, SUN Han, ZHANG Zhong-yi. The primary applictaion of remote sensing data in heavy fog monitoring of Shanghai-Nanjing high way [J]. Remote Sens. Info., 1997, (3): 25.
    [19]
    LI Ya-chun, SUN Han. Research of remote sensing monitoring of day-time fog by using the data of GMS-5 meteorological satellite [J]. J. Nanjing Inst. Meteor., 2001, 24(3): 343.
    [20]
    LI Ya-chun, SUN Han, XU Meng. The existing problem in the application of meteorological remote sensing fog monitoring [J]. J. Appl. Meteor. Sci., 2000, 15(4): 223-227.
    [21]
    ZHOU Hong-mei, TAN Jian-guo, GE Wei-qiang, YANG Chong-jun. NOAA Satallite Could and Fog Automatic Detecting and Reparation Method [J]. J. Nat. Disaster, 2003, 12(3): 41-47.
  • Related Articles

    [1]HUANG Bin, GAO Shi-bo, YU Run-ling, ZHAO Wei, ZHOU Guan-bo. Monitoring Sea Fog over the Yellow Sea and Bohai Bay Based on Deep Convolutional Neural Network[J]. Journal of Tropical Meteorology, 2024, 30(3): 223-229. DOI: 10.3724/j.1006-8775.2024.020
    [2]GAO Yuan, YAO Xiu-ping. Impact of Dynamic and Thermal Forcing on the Intensity Evolution of the Vortices over the Tibetan Plateau in Boreal Summer[J]. Journal of Tropical Meteorology, 2020, 26(2): 239-252. DOI: 10.46267/j.1006-8775.2020.022
    [3]FEI Dong-dong, NIU Sheng-jie, YANG Jun. ANALYSIS OF THE MICROPHYSICAL STRUCTURE OF RADIATION FOG IN XUANEN MOUNTAINOUS REGION OF HUBEI, CHINA[J]. Journal of Tropical Meteorology, 2017, 23(2): 177-190. DOI: 10.16555/j.1006-8775.2017.02.006
    [4]ZHANG Yue, FAN Shu-xian, ZHANG Shu-ting, WEI Jin-cheng. MICROSTRUCTURES AND TEMPORAL VARIATION CHARACTERISTICS DURING A SEA FOG EVENT ALONG THE WEST COAST OF THE TAIWAN STRAIT[J]. Journal of Tropical Meteorology, 2017, 23(2): 155-165. DOI: 10.16555/j.1006-8775.2017.02.004
    [5]ZHANG Shu-ting, NIU Sheng-jie. HAZE-TO-FOG TRANSFORMATION DURING A LONG LASTING, LOW VISIBILITY EPISODE IN NANJING[J]. Journal of Tropical Meteorology, 2016, 22(S1): 67-77. DOI: 10.16555/j.1006-8775.2016.S1.007
    [6]ZHOU Hong-mei, GE Wei-qiang, YANG He-qun, LIU Jie, YANG Yan-li. IMPROVING THE EFFECT OF GREENING ON HEAT ISLAND IN URBAN RESIDENTIAL DISTRICTS BASED ON REMOTE SENSING AND GIS ANALYSIS[J]. Journal of Tropical Meteorology, 2015, 21(3): 303-310. DOI: doi: 10.16555/j.1006-8775.2015.03.010
    [7]DENG Yu-jiao, WANG Jie-cun, CAO Jing, CAO Chao-xiong. DETECTION OF DAYTIME FOG IN SOUTH CHINA SEA USING MODIS DATA[J]. Journal of Tropical Meteorology, 2014, 20(4): 386-390.
    [8]JIN Hua, HE Hui, ZHANG Qiang, HUANG Meng-yu, MA Xin-cheng, ZHANG Lei, JI Lei. ANALYSES OF A MICROPHYSICAL RESPONSE TO THE SEEDING IN TWO CASES OF ARTIFICIAL FOG DISSIPATION[J]. Journal of Tropical Meteorology, 2013, 19(4): 358-366.
    [9]SHU Yu, PAN Yi-nong, WANG Wei. STATISTIC CHARACTERISTICS OF MCSS OVER ASIA AND WESTERN PACIFIC REGION[J]. Journal of Tropical Meteorology, 2012, 18(4): 457-472.
    [10]WU Dui, LI Fei, DENG Xue-jiao, BI Xue-yan, WANG Xin-hua, HUANG Xiao-ying. STUDY ON THE CHEMICAL CHARACTERISTICS OF POLLUTING FOG IN GUANGZHOU AREA IN SPRING[J]. Journal of Tropical Meteorology, 2009, 15(1): 68-72.

Get Citation

ZHOU Hong-mei, GE Wei-qiang, BAI Hua, et al. RESEARCH ON AUTOMATIC FOG IDENTIFICATION TECHNOLOGY BY METEOROLOGICAL SATELLITE REMOTE SENSING[J]. Journal of Tropical Meteorology, 2009, 15(1): 28-37.
ZHOU Hong-mei, GE Wei-qiang, BAI Hua, et al. RESEARCH ON AUTOMATIC FOG IDENTIFICATION TECHNOLOGY BY METEOROLOGICAL SATELLITE REMOTE SENSING[J]. Journal of Tropical Meteorology, 2009, 15(1): 28-37.
Export:  

Share Article

Article Metrics

Article views:1598 Times PDF downloads:1691 Times Cited by: Times

Manuscript History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return