Article Contents

COMPARISONS BETWEEN DOPPLER AND SIMULATED FEATURES OF A SUPERCELL

Funding:

  • Firstly, typical features of a supercell, which occurred in Guangzhou on August 11, 2004, are discussed by using the new generation weather radar data. V-notch, finger-echo, weak echo region, overhang and echo-wall are observed from reflectivity products. A vertical cross section of the radial velocity is made along the direction of the low-level inflow and across the maximum reflectivity core, which displays a part of strong updraft and downdraft. Secondly, a 3-D convective storm model is used to simulate the supercell. The maximum reflectivity and the core thickness of the simulated radar echo are 75 dBz and 14km, respectively. These values are more than the counterparts that are detected by radar. The reason is that attenuation is not calculated in the model. The wind field structure is also given when the storm is the strongest. Divergence, caused by thunderstorm outflow, is in the low level. In the middle and high level, convergence is dominant, but the plume is not simulated at the top. Finally, the evolution of the simulated vertical motion is documented. The interaction between the environmental wind and the updraft, which is formed by the convergence on the ground at the beginning, makes the storm stronger. Then, downdraft occurs and grows. When it becomes dominant, the supercell collapses.

Get Citation+

COMPARISONS BETWEEN DOPPLER AND SIMULATED FEATURES OF A SUPERCELL [J]. Journal of Tropical Meteorology, 2007, 13(1): 37-40.
COMPARISONS BETWEEN DOPPLER AND SIMULATED FEATURES OF A SUPERCELL [J]. Journal of Tropical Meteorology, 2007, 13(1): 37-40.
Export:  

Share Article

Manuscript History

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

COMPARISONS BETWEEN DOPPLER AND SIMULATED FEATURES OF A SUPERCELL

Abstract: Firstly, typical features of a supercell, which occurred in Guangzhou on August 11, 2004, are discussed by using the new generation weather radar data. V-notch, finger-echo, weak echo region, overhang and echo-wall are observed from reflectivity products. A vertical cross section of the radial velocity is made along the direction of the low-level inflow and across the maximum reflectivity core, which displays a part of strong updraft and downdraft. Secondly, a 3-D convective storm model is used to simulate the supercell. The maximum reflectivity and the core thickness of the simulated radar echo are 75 dBz and 14km, respectively. These values are more than the counterparts that are detected by radar. The reason is that attenuation is not calculated in the model. The wind field structure is also given when the storm is the strongest. Divergence, caused by thunderstorm outflow, is in the low level. In the middle and high level, convergence is dominant, but the plume is not simulated at the top. Finally, the evolution of the simulated vertical motion is documented. The interaction between the environmental wind and the updraft, which is formed by the convergence on the ground at the beginning, makes the storm stronger. Then, downdraft occurs and grows. When it becomes dominant, the supercell collapses.

COMPARISONS BETWEEN DOPPLER AND SIMULATED FEATURES OF A SUPERCELL [J]. Journal of Tropical Meteorology, 2007, 13(1): 37-40.
Citation: COMPARISONS BETWEEN DOPPLER AND SIMULATED FEATURES OF A SUPERCELL [J]. Journal of Tropical Meteorology, 2007, 13(1): 37-40.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return