[1]
|
LIN L X. Technical Guidance on Weather Forecasting in Guangdong Province[M]. Beijing: China Meteorological Press, 2006: 143-152(in Chinese). |
[2]
|
LI J H. Ultra low-level jets and the heavy rain in early summer over south China[J]. Acta Meteorologica Sinica, 1982, 40(3): 319-326(in Chinese), https://doi.org/10.11676/qxxb1982.033 |
[3]
|
WU M W, LUO Y L. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015[J]. Journal of Meteorological Research, 2016, 30(5): 719-736, https://doi.org/10.1007/s13351-016-6089-8 |
[4]
|
QIAN L, DING Z Y, ZHAO X J, et al. Structure features and composite analysis of convective cells in a warm sector heavy rainfall event over southern China[J]. Journal of Tropical Meteorology, 2017, 23(3): 245-258, https://doi.org/10.16555/j.1006-8775.2017.03.002 |
[5]
|
MIAO C S, YANG Y Y, WANG J H, et al. A comparative study on characteristics and thermo-dynamic development mechanisms of two types of warm-sector heavy rainfall along the south China coast[J]. Journal of Tropical Meteorology, 2018, 24(4): 494-507, https://doi.org/10.16555/j.1006-8775.2018.04.008 |
[6]
|
DU Y, CHEN G X. Heavy rainfall associated with double low-level jets over southern China. Part Ⅱ: Convection initiation[J]. Monthly Weather Review, 2019, 147(2): 543-565, https://doi.org/10.1175/MWR-D-18-0102.1 |
[7]
|
HUANG Y J, LIU Y B, LIU Y W, et al. Mechanisms for a record breaking rainfall in the coastal metropolitan city of Guangzhou, China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(3): 1370-1391, https://doi.org/10.1029/2018JD030229 |
[8]
|
HUANG Y J, LIU Y B, LIU Y W, et al. Budget analyses of a record-breaking rainfall event in the coastal metropolitan city of Guangzhou, China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(6): 9391-9406, https://doi.org/10.1029/2018JD030229 |
[9]
|
LIANG Z M, FOVELL R G, LIU Y. Observational analysis of the characteristics of the synoptic situation and evolution of the organized warm-sector rainfall in the coastal region of south China in the pre-summer rainy season[J]. Atmosphere, 2019, 10(11): 722, https://doi.org/10.3390/atmos10110722 |
[10]
|
WU Y L, GAO Y D, CHEN D H, et al. Synoptic characteristics related to warm-sector torrential rainfall events in south China during the annually first rainy season[J]. Journal of Tropical Meteorology, 2020, 26(3): 253-260, https://doi.org/10.46267/j.1006-8775.2020.023 |
[11]
|
LIANG Z M, GAO S T. Organized warm-sector rainfall in the coastal region of south China in an anticyclone synoptic situation: Observational analysis[J]. Journal of Meteorological Research, 2021, 35(3): 460-477, https://doi.org/10.1007/s13351-021-0157-4 |
[12]
|
DU Y, SHEN Y, CHEN G X. Influence of coastal marine boundary layer jets on rainfall in south China[J]. Advances in Atmospheric Sciences, 2022, 39(5): 782-801, https://doi.org/10.1007/s00376-021-1195-7 |
[13]
|
WU N G, DING X, WEN Z P, et al. Contrasting frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season[J]. Atmospheric Research, 2020, 235: 104693, https://doi.org/10.1016/j.atmosres.2019.104693 |
[14]
|
WANG C L, ZHAO K, HUANG A N, et al. The crucial role of synoptic pattern in determining the spatial distribution and diurnal cycle of heavy rainfall over the south China coast[J]. Journal of Climate, 2021, 34(7): 2441-2458, https://doi.org/10.1175/JCLI-D-20-0274.1 |
[15]
|
DU Y, CHEN G X, HAN B, et al. Convection initiation and growth at the coast of south China. Part Ⅱ: Effects of the terrain, coastline and cold pools[J]. Monthly Weather Review, 2020, 148(9): 3871-3892, https://doi.org/10.1175/MWR-D-20-0090.1 |
[16]
|
YIN J F, ZHANG D L, LUO Y L, et al. On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part Ⅰ: Impacts of urbanization and orography[J]. Monthly Weather Review, 2020, 148(3): 955-979, https://doi.org/10.1175/MWR-D-19-0212.1 |
[17]
|
LI H Q, HUANG Y J, HU S, et al. Roles of terrain, surface roughness, and cold pool outflows in an extreme rainfall event over the coastal region of south China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021JD035556, https://doi.org/10.1029/2021JD035556 |
[18]
|
GAO X Y, LUO Y L, LIN Y L, et al. A source of WRF simulation error for the early-summer warm-sector heavy rainfall over south China coast: Land-sea thermal contrast in the boundary layer[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(4): e2021JD035179, https://doi.org/10.1029/2021JD035179 |
[19]
|
ZHANG M R, RASMUSSEN K L, MENG Z Y, et al. Impacts of coastal terrain on warm-sector heavy-rainproducing MCSs in southern China[J]. Monthly Weather Review, 2022, 150(3): 603-624, https://doi.org/10.1175/MWR-D-21-0190.1 |
[20]
|
HE L F, CHEN T, KONG Q. A review of studies on prefrontal torrential rain in south China[J]. Journal of Applied Meteorological Science, 2016, 27(5): 559-569, https://doi.org/10.11898/1001-7313.20160505 |
[21]
|
WANG H, LUO Y L, JOU B J D. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(23): 13206-13232, https://doi.org/10.1002/2014JD022339 |
[22]
|
LI S, MENG Z Y, WU N G. A preliminary study on the organizational modes of mesoscale convective systems associated with warm-sector heavy rainfall in south China [J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16): e2021JD034587, https://doi.org/10.1029/2021JD034587 |
[23]
|
PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Monthly Weather Review, 2000, 128(10): 3413-3436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2 doi: |
[24]
|
SCHUMACHER R S, JOHNSON R H. Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J]. Monthly Weather Review, 2005, 133(4): 961-976, https://doi.org/10.1175/MWR2899.1 |
[25]
|
GALLUS Jr W A, SNOOK N A, JOHNSON E V. Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study[J]. Weather and Forecasting, 2008, 23(1): 101-113, https://doi.org/10.1175/2007WAF2006120.1 |
[26]
|
ZHENG L L, SUN J H, ZHANG X L, et al. Organizational modes of mesoscale convective systems over central east China[J]. Weather and Forecasting, 2013, 28(5): 1081-1098, https://doi.org/10.1175/WAF-D-12-00088.1 |
[27]
|
LIU X, LUO Y L, GUAN Z Y, et al. An extreme rainfall event in coastal south China during SCMREX-2014: Formation and roles of rainband and echo trainings[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9256-9278, https://doi.org/10.1029/2018JD028418 |
[28]
|
ZHAO K, HUANG H, WANG M J, et al. Recent progress in dual-polarization radar research and applications in China[J]. Advances in Atmospheric Sciences, 2019, 36(9): 961-974, https://doi.org/10.1007/s00376-019-9057-2 |
[29]
|
LIU X T, RUAN Z, HU S, et al. The Longmen Cloud Physics Field Experiment Base, China Meteorological Administration[J]. Journal of Tropical Meteorology, 2023, 29(1): 1-15, https://doi.org/10.46267/j.1006-8775.2023.001 |
[30]
|
LI M X, LUO Y L, ZHANG D L, et al. Analysis of a record-breaking rainfall event associated with a monsoon coastal megacity of south China using multisource data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6404-6414, https://doi.org/10.1109/TGRS.2020.3029831 |
[31]
|
HAN B, DU Y, WU C, et al. Microphysical characteristics of the coexisting frontal and warm-sector heavy rainfall in south China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(21): e2021JD035446, https://doi.org/10.1029/2021JD035446 |
[32]
|
WANG H, YIN J F, WU N G, et al. Microphysical structures of an extreme rainfall event over the coastal metropolitan city of Guangzhou, China: Observation analysis with polarimetric radar[J]. Asia-Pacific Journal of Atmospheric Sciences, 2023, 59: 3-16, https://doi.org/10.1007/s13143-022-00289-y |
[33]
|
LUO Y L, ZHANG R H, WAN Q L, et al. The Southern China Monsoon Rainfall Experiment(SCMREX)[J]. Bulletin of the American Meteorological Society, 2017, 98(5): 999-1013, https://doi.org/10.1175/BAMS-D-15-00235.1 |
[34]
|
ZHANG J, HOWARD K, GOURLEY J J. Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes [J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(1): 30-42, https://doi.org/10.1175/jtech-1689.1 |
[35]
|
ZHANG G F, VIVEKANANDAN J, BRANDES E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 830-841, https://doi.org/10.1109/36.917906 |
[36]
|
LIU X T, WAN Q L, WANG H, et al. Raindrop size distribution parameters retrieved from Guangzhou S-band polarimetric radar observations[J]. Journal of Meteorological Research, 2018, 32(4): 571-583, https://doi.org/10.1007/s13351-018-7152-4 |
[37]
|
CORFIDI S F, MERITT J H, FRITSCH J M. Predicting the movement of mesoscale convective complexes[J]. Weather and Forecasting, 1996, 11(1): 41-46, https://doi.org/10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2 doi: |
[38]
|
CORFIDI S F. Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs [J]. Weather and Forecasting, 2003, 18(6): 997-1017, https://doi.org/10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2 doi: |
[39]
|
WANG H, KONG F Y, WU N G, et al. An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer[J]. Atmospheric Research, 2019, 226(15): 171-180, https://doi.org/10.1016/j.atmosres.2019.04.009 |
[40]
|
KUMJIAN M R, PRAT O P. The impact of raindrop collisional processes on the polarimetric radar variables [J]. Journal of the Atmospheric Sciences, 2014, 71(8): 3052-3067, https://doi.org/10.1175/JAS-D-13-0357.1 |
[41]
|
DOLAN B, RUTLEDGE S A, LIM S, et al. A robust Cband hydrometeor identification algorithm and application to a long-term polarimetric radar dataset[J]. Journal of Applied Meteorology and Climatology, 2013, 52(9): 2162-2186, https://doi.org/10.1175/JAMC-D-12-0275.1 |
[42]
|
WEN J, ZHAO K, HUANG H, et al. Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(15): 8033-8050, https://doi.org/10.1002/2016JD026346 |
[43]
|
ZHANG A Q, CHEN Y L PAN X, et al. Precipitation microphysics of tropical cyclones over Northeast China in 2020[J]. Remote Sensing, 2022, 14(9): 2188, https://doi.org/10.3390/rs14092188 |