[1]
|
ZHANG Q, WU L, LIU Q. Tropical cyclone damages in China 1983-2006[J]. Bull Am Meteorol Soc, 2009, 90(4): 489-495, https://doi.org/10.1175/2008BAMS2631.1. |
[2]
|
GAO L, HUANG J, CHEN X, et al. Risk of extreme precipitation under nonstationarity conditions during the second flood season in the southeastern coastal region of China[J]. J Hydrometeorol, 2017, 18(3): 669-681, https://doi.org/10.1175/JHM-D-16-0119.1. |
[3]
|
KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Am Meteorol Soc, 1996, 77(3): 437-471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. doi: |
[4]
|
KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al. NCEP-DOE AMIP-II Renalalysys (R-2)[J]. Bull Am Meteorol Soc, 2002, 83(11): 1631-1643, https://doi.org/10.1175/BAMS-83-11-1631. |
[5]
|
UPPALA S M, KALLBERG P W, SIMMONS A J, et al. The ERA-40 re-analysis[J]. Quarter J Roy Meteorol Soc, 2005, 131(612): 2961-3012, https://doi.org/10.1256/qj.04.176. |
[6]
|
ONOGI K, TSUTSUI J, KOIDE H, et al. The JRA-25 reanalysis[J]. J Meteorol Soc Japan, 2007, 85(3): 369-432, https://doi.org/10.2151/jmsj.85.369. |
[7]
|
SAHA S, MOORTHI S, PAN H L, et al. The NCEP climate forecast system reanalysis[J]. Bull Am Meteorol Soc, 2010, 91(8): 1015-1057, https://doi.org/10.1175/2010BAMS3001.1. |
[8]
|
DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarter J Roy Meteorol Soc, 2011, 137(656): 553-597, https://doi.org/10.1002/qj.828. |
[9]
|
RIENECKER M M, SUAREZ M J, GELARO R, et al. MERRA: NASA's modern-era retrospective analysis for research and applications[J]. J Climate, 2011, 24(14): 3624-3648, https://doi.org/10.1175/JCLI-D-11-00015.1. |
[10]
|
KOBAYASHI S, OTA Y, HARADA Y, et al. The JRA-55 reanalysis: General specifications and basic characteristics[J]. J Meteorol Soc Japan, 2015, 93(1): 5-48, https://doi.org/10.2151/jmsj.2015-001. |
[11]
|
HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quart J Roy Meteorol Soc, 2020, 146(730): 1999-2049, https://doi.org/10.1002/qj.3803. |
[12]
|
WANG W, XIE P, YOO S H, et al. An assessment of the surface climate in the NCEP climate forecast system reanalysis[J]. Clim Dyn, 2011, 37, 1601-1620, https://doi.org/10.1007/s00382-010-0935-7. |
[13]
|
WANG B, WU R, FU X. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate[J]. J Climate, 2000, 13(9): 1517-1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2. doi: |
[14]
|
WHEELER M C, HENDON H H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction[J]. Mon Wea Rev, 2004, 132(8): 1917-1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2. doi: |
[15]
|
DULIÈ V R, ZHANG Y, SALATHÉ E P. Extreme precipitation and temperature over the U. S. Pacific Northwest: A comparison between observations, reanalysis data, and regional models[J]. J Climate, 2011, 24(7): 1950-1964, https://doi.org/10.1175/2010JCLI3224.1. |
[16]
|
CARVALHO L M V, JONES C. CMIP5 simulations of low-level tropospheric temperature and moisture over the tropical americas[J]. J Climate, 2013, 26(17): 6257-6286, https://doi.org/10.1175/JCLI-D-12-00532.1. |
[17]
|
GUO Y, LI J, LI Y. Seasonal forecasting of north china summer rainfall using a statistical downscaling model[J]. J Appl Meteorol Climatol, 2014, 53(7): 1739-1749, https://doi.org/10.1175/JAMC-D-13-0207.1. |
[18]
|
SOLMAN S A, ORLANSKI I. Climate change over the extratropical Southern Hemisphere: The tale from an ensemble of reanalysis datasets[J]. J Climate, 2016, 29(5): 1673-1687, https://doi.org/10.1175/JCLI-D-15-0588.1. |
[19]
|
DECKER M, BRUNKE M A, WANG Z, et al. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations[J]. J Climate, 2012, 25(6): 1916-1944, https://doi.org/10.1175/JCLI-D-11-00004.1. |
[20]
|
BENGTSSON L, HAGEMANN S, HODEGES K I. Can climate trends be calculated from reanalysis data[J]. J Geophys Res: Atmos, 2004, 109(D11): https://doi.org/10.1029/2004JD004536. |
[21]
|
KISTLER R, KALNEY E, COLLINS W, et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation[J]. Bull Am Meteorol Soc, 2001, 82(2): 247-267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2. doi: |
[22]
|
ZHAO S, HE W, JIANG Y. Evaluation of NCEP-2 and CFSR reanalysis seasonal temperature data in China using detrended fluctuation analysis[J]. Int J Climatol, 2018, 38(1): 252-263, https://doi.org/10.1002/joc.5173. |
[23]
|
MA L, ZHANG T, LI Q, et al. Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China[J]. J Geophys Res: Atmos, 2008, 113(D15): 1-15, https://doi.org/10.1029/2007JD009549. |
[24]
|
MOONEY P A, MULLIGAN F J, FEALY R. Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland[J]. Int J Climatol, 2011, 31(4): 545-557, https://doi.org/10.1002/joc.2098. |
[25]
|
HE W P, ZHAO S S. Assessment of the quality of NCEP-2 and CFSR reanalysis daily temperature in China based on long-range correlation[J]. Clim Dyn, 2018, 50, 493-505, https://doi.org/10.1007/s00382-017-3622-0. |
[26]
|
MAO J, SHI X, MA L, et al. Assessment of reanalysis daily extreme temperatures with China's homogenized historical dataset during 1979-2001 using probability density functions[J]. J Climate, 2010, 23(24): 6605-6623, https://doi.org/10.1175/2010JCLI3581.1. |
[27]
|
WEN C, XUE Y, KUMAR A, et al. How do uncertainties in NCEP R2 and CFSR surface fluxes impact tropical ocean simulations[J]. Clim Dyn, 2017, 49, 3327-3344, https://doi.org/10.1007/s00382-016-3516-6. |
[28]
|
CHEN X, HUANG X, LOEB NG, et al. Comparisons of clear-sky outgoing Far-IR flux inferred from satellite observations and computed from the three most recent reanalysis products[J]. J Climate, 2013, 26(2): 478-494, https://doi.org/10.1175/JCLI-D-12-00212.1. |
[29]
|
ZIB B J, DONG X, XI B, et al. Evaluation and intercomparison of cloud fraction and radiative fluxes in recent reanalyses over the arctic using BSRN surface observations[J]. J Climate, 2012, 25(7): 2291-2305, https://doi.org/10.1175/JCLI-D-11-00147.1. |
[30]
|
YANG K, ZHANG J. Evaluation of reanalysis datasets against observational soil temperature data over China[J]. Clim Dyn, 2018, 50, 317-337, https://doi.org/10.1007/s00382-017-3610-4. |
[31]
|
WANG A, ZENG X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. J Geophys Res: Atmos, 2012, 117(D5): D05102, https://doi.org/10.1029/2011JD016553. |
[32]
|
BAO X, ZHANG F. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau.[J]. J Climate, 2013, 26(1): 206-214, https://doi.org/10.1175/JCLI-D-12-00056.1. |
[33]
|
BRUNKE M A, STEGALL S T, ZENG X. A climatology of tropospheric humidity inversions in five reanalyses[J]. Atmos Res, 2015, 153, 165-187, https://doi.org/10.1016/j.atmosres.2014.08.005. |
[34]
|
GUP D, SU Y, ZHOU X, et al. Evaluation of the trend uncertainty in summer ozone valley over the Tibetan Plateau in three reanalysis datasets[J]. J Meteorol Res, 2017, 31(2): 431-437, https://doi.org/10.1007/s13351-017-6058-x. |
[35]
|
DAVIS S M, HEGGLIN M I, FUJIWARA M, et al. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP[J]. Atmos Chem Phys, 2017, 17, 12743-12778, https://doi.org/10.5194/acp-17-12743-2017. |
[36]
|
ZHANG W, LOU Y, HUANG J, et al. Multiscale variations of precipitable water over China based on 1999-2015 ground-based GPS observations and evaluations of reanalysis products[J]. J Climate, 2018, 31(3): 945-962, https://doi.org/10.1175/JCLI-D-17-0419.1. |
[37]
|
XUE Y, HUANG B, HU Z, et al. An assessment of oceanic variability in the NCEP climate forecast system reanalysis[J]. Clim Dyn, 2011, 37, 2511-2539, https://doi.org/10.1007/s00382-010-0954-4. |
[38]
|
LIU H, LIU X, ZHANG M. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific[J]. Environ Res Lett, 2011, 6, 329-346, https://doi.org/10.1088/1748-9326/6/3/034022. |
[39]
|
CHAUDHURI A H, PONTE R M, NGUYEN A T. A comparison of atmospheric reanalysis products for the Arctic Ocean and implications for uncertainties in air-sea fluxes[J]. J Climate, 2014, 27(14): 5411-5421, https://doi.org/10.1175/JCLI-D-13-00424.1. |
[40]
|
CHEN S, GAN T Y, TAN X, et al. Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China.[J]. Clim Dyn, 2019, 53, 737-757, https://doi.org/10.1007/s00382-018-04611-1. |
[41]
|
SHAH R, MISHRA V. Evaluation of the reanalysis products for the monsoon season droughts in India[J]. J Hydrometeorol, 2014, 15(4): 1575-1591, https://doi.org/10.1175/jhm-d-13-0103.1. |
[42]
|
HODGES K I, LEE R W, BENGTSSON. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25[J]. J Climate, 2011, 24(18): 4888-4906, https://doi.org/10.1175/2011JCLI4097.1. |
[43]
|
ZHOU C, WANG K. Contrasting Daytime and nighttime precipitation variability between observations and eight reanalysis products from 1979 to 2014 in China[J]. J Climate, 2017, 30(16): 6443-6464, https://doi.org/10.1175/JCLI-D-16-0702.1. |
[44]
|
HUANG D Q, ZHU J, ZHANG Y C, et al. Assessment of summer monsoon precipitation derived from five reanalysis datasets over East Asia[J]. Quart J Roy Meteorol Soc, 2016, 142(694): 108-119, https://doi.org/10.1002/qj.2634. |
[45]
|
BOSILOVICH M G, CHEN J, ROBERTSON F R, et al. Evaluation of global precipitation in reanalyses[J]. J Appl Meteorol Climatol, 2008, 47(9): 2279-2299, https://doi.org/10.1175/2008JAMC1921.1. |
[46]
|
LIN R, ZHOU T, QIAN Y. Evaluation of global monsoon precipitation changes based on five reanalysis datasets[J]. J Climate, 2014, 27(3): 1271-1289, https://doi.org/10.1175/JCLI-D-13-00215.1. |
[47]
|
YOU Q, MIN J, ZHANG W, et al. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau[J]. Clim Dyn, 2015, 45, 791-806, https://doi.org/10.1007/s00382-014-2310-6. |
[48]
|
LEE D E, BIASUTTI M. Climatology and variability of precipitation in the Twentieth-Century Reanalysis[J]. J Climate, 2014, 27(15): 5964-5981, https://doi.org/10.1175/JCLI-D-13-00630.1. |
[49]
|
AUGER J D, BIRKEL S D, MAAASCH K A, et al. An ensemble mean and evaluation of third generation global climate reanalysis models[J].Atmosphere (Basel), 2018, 9(6): 236, https://doi.org/10.3390/atmos9060236. |
[50]
|
ZHANG Q, KÖRNICH H, HOLMGREN K. How well do reanalyses represent the southern African precipitation[J].Clim Dyn, 2013, 40, 951-962, https://doi.org/10.1007/s00382-012-1423-z. |
[51]
|
BROMWICH D H, NICOLAS J P, MONAGHAN A J.An Assessment of precipitation changes over antarctica and the southern ocean since 1989 in contemporary global reanalyses[J].J Climate, 2011, 24(16): 4189-4209, https://doi.org/10.1175/2011JCLI4074.1. |
[52]
|
NÜRNBERGER G, ZEILFELDER F.Developments in bivariate spline interpolation[J].J Comput Appl Math, 2000, 121(1-2): 125-152, https://doi.org/10.1016/S0377-0427(00)00346-0. |