[1]
|
MEDHAUG I, STOLPE M B, FISCHER E M, et al. Reconciling controversies about the 'global warming hiatus'[J]. Nature, 2017, 545: 41-47, https://doi.org/10.1038/nature22315. |
[2]
|
KOSAKA Y, XIE S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501 (7467): 403-407, https://doi.org/10.1038/nature12534. |
[3]
|
FYFE J C, GILLETT N P, ZWIERS F W. Overestimated global warming over the past 20 years[J]. Nature Climate Change, 2013, 3(9): 767-769, https://doi.org/10.1038/nclimate1972. |
[4]
|
GUEMAS V, DOBLAS-REYES F J, ANDREU-BURILLO I, et al. Retrospective prediction of the global warming slowdown in the past decade[J]. Nature Climate Change, 2013, 3(7): 649-653, https://doi.org/10.1038/nclimate1863. |
[5]
|
JOHNSON N C, XIE S P, KOSAKA Y, et al. Increasing occurrence of cold and warm extremes during the recent global warming slowdown[J]. Nature Communications, 2018, 9(1): 1724, https://doi.org/10.1038/s41467-018-04040-y. |
[6]
|
LIU W, XIE S P. An ocean view of the global surface warming hiatus[J]. Oceanography, 2018, 31(2): 72-79, https://doi.org/10.5670/oceanog.2018.217. |
[7]
|
HU X, SEJAS S A, CAI M, et al. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim [J]. Climate Dyn, 2019, 52(3-4): 2005-2016, https://doi.org/10.1007/s00382-018-4232-1. |
[8]
|
KARL T R, ARGUEZ A, HUANG B, et al. Possible artifacts of data biases in the recent global surface warming hiatus[J]. Science, 2015: aaa5632, https://doi.org/10.1126/science.aaa5632. |
[9]
|
LI Q, YANG S, XU W, et al. China experiencing the recent warming hiatus[J]. Geophys Res Lett, 2015, 42(3): 889-898, https://doi.org/10.1002/2014GL062773. |
[10]
|
SUN X, REN G, XU W, et al. Global land-surface air temperature change based on the new CMA GLSAT data set[J]. Sci Bull, 2017, 62(4): 236-238, https://doi.org/10.1016/j.scib.2017.01.017. |
[11]
|
XIE Y, HUANG J, LIU Y. From accelerated warming to warming hiatus in China[J]. Int J Climatology, 2017, 37 (4): 1758-1773, https://doi.org/10.1002/joc.4809. |
[12]
|
BELKIN I M. Rapid warming of large marine ecosystems [J]. Progress in Oceanography, 2009, 81(1-4): 207-213, https://doi.org/10.1016/j.pocean.2009.04.011. |
[13]
|
WU L, CAI W, ZHANG L, et al. Enhanced warming over the global subtropical western boundary currents[J]. Nature Climate Change, 2012, 2(3): 161-166, https://doi.org/10.1038/nclimate1353. |
[14]
|
LI Y, REN G, WANG Q, et al. More extreme marine heatwaves in the China Seas during the global warming hiatus[J]. Environ Res Lett, 2019, 14(10): 104010, https://doi.org/10.1088/1748-9326/ab28bc. |
[15]
|
ZHI Xie-fei, YANG Hua, XU Shu-wen, et al. A comparative analysis of atmospheric and oceanic conditions before the occurrence of two types of El Niño events[J]. J Trop Meteor, 2019, 25(1): 34-44, https://doi.org/10.16555/j.1006-8775.2019.01.004. |
[16]
|
CAPUTI N, KANGAS M, DENHAM A, et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot[J]. Ecology and Evolution, 2016, 6(11): 3583-3593, https://doi.org/10.1002/ece3.2137. |
[17]
|
HOBDAY A J, ALEXANDER L V, PERKINS S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanogr, 2016, 141: 227-238, https://doi.org/10.1016/j.pocean.2015.12.014. |
[18]
|
OLIVER E C J, DONAT M G, BURROWS M T, et al. Longer and more frequent marine heatwaves over the past century[J]. Nature Communications, 2018, 9(1): 1-12, https://doi.org/10.1038/s41467-018-03732-9. |
[19]
|
Le NOHAÏC M, ROSS C L, CORNWALL C E, et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia [J]. Sci Rep, 2017, 7(1): 1-11, https://doi.org/10.1038/s41598-017-14794-y. |
[20]
|
FRÖLICHER T L, FISCHER E M, GRUBER N. Marine heatwaves under global warming[J]. Nature, 2018, 560 (7718): 360-364, https://doi.org/10.1038/s41586-018-0383-9. |
[21]
|
BANZON V, SMITH T M, CHIN T M, et al. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies[J]. Earth Sys Sci Data, 2016, 8(1): 165-176, https://doi.org/10.5194/essd-8-165-2016. |
[22]
|
REYNOLDS R W, SMITH T M, LIU C, et al. Daily high-resolution-blended analyses for sea surface temperature [J]. J Climate, 2007, 20(22): 5473-5496, https://doi.org/10.1175/2007JCLI1824.1. |
[23]
|
LIMA F P, WETHEY D S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming[J]. Nature Communications, 2012, 3(1): 1-13, https://doi.org/10.1038/ncomms1713. |
[24]
|
BENTHUYSEN J A, OLIVER E C J, FENG M, et al. Extreme marine warming across tropical Australia during austral summer 2015-2016 [J]. J Geophys Res: Oceans, 2018, 123(2): 1301-1326, https://doi.org/10.1002 /2017JC013326. doi: |
[25]
|
WANG Qing-yuan, LI Yan, LI Qing-quan, et al. A comparison and evaluation of two centennial-scale sea surface temperature datasets in the China seas and their adjacent sea areas[J]. J Trop Meteor, 2018, 24(4): 448-456, https://doi.org/10.16555/j.1006-8775.2018.04.004. |
[26]
|
FRÖLICHER T L, LAUFKÖTTER C. Emerging risks from marine heat waves[J]. Nature Communications, 2018, 9(1): 650, https://doi.org/10.1038/s41467-018-03163-6. |
[27]
|
SMALE D A, WERNBERG T, OLIVER E C J, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services[J]. Nature Climate Change, 2019, 9(4): 306-312, https://doi.org/10.1038/s41558-019-0412-1. |
[28]
|
STRAMSKA M, BIAŁOGRODZKA J. Spatial and temporal variability of sea surface temperature in the Baltic Sea based on 32-years (1982-2013) of satellite data[J]. Oceanologia, 2015, 57(3): 223-235, https://doi.org/10.1016/j.oceano.2015.04.004. |
[29]
|
SEN P K. Estimates of the regression coefficient based on Kendall's tau[J]. J Amer Statistical Association, 1968, 63 (324): 1379-1389, https://doi.org/10.2307/2285891. |
[30]
|
SHEFFIELD J, WOOD E F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations[J]. Climate Dyn, 2008, 31(1): 79-105, https://doi.org/10.1007/s00382-007-0340-z. |
[31]
|
DORIGO W, De JEU R, CHUNG D, et al. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture[J]. Geophys Res Lett, 2012, 39(18), https://doi.org/10.1029/2012GL052988. |
[32]
|
YOU Q, REN G, FRAEDRICH K et al. Winter temperature extremes in China and their possible causes [J]. Int J Climatology, 2013, 33, 1444 − 1455, https://doi.org/10.1002/joc.3525. |
[33]
|
DING Y, LIU Y, LIANG S, et al. Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change[J]. Acta Meteorologica Sinica, 2014, 28: 693-713, https://doi.org/10.1007/s13351-014-4046-y. |
[34]
|
CAI R, TAN H, KONTOYIANNIS H. Robust surface warming in offshore china seas and its relationship to the East Asian monsoon wind field and ocean forcing on interdecadal timescales[J]. J Climate, 2017, 30: 8987-9005, https://doi.org/10.1175/JCLI-D-16-0016.1. |
[35]
|
BELKIN I, IGOR M, LEE M. Long-term variability of sea surface temperature in Taiwan Strait[J]. Climatic Change, 124 (2014): 821-834, https://doi.org/10.1007/s10584-014-1121-4. |
[36]
|
PEI Y., LIU X, HE H. Interpreting the sea surface temperature warming trend in the Yellow Sea and East China Sea[J]. Sci China: Earth Sci, 2017, 60(8), 1558-1568, https://doi.org/10.1007/s11430-017-9054-5. |
[37]
|
SHU Y, WANG D, FENG M, et al. The contribution of local wind and ocean circulation to the interannual variability in coastal upwelling intensity in the northern South China Sea[J]. J Geophys Res: Oceans, 2018, 123, https://doi.org/10.1029/2018JC014223. |
[38]
|
WANG Qin, LI Shuang-lin, FU Jian-jian. The influences of SSTA over Kuroshio and its extension on rainfall in northeast China under the background of two different El Niño cases[J]. J Trop Meteor, 2018, 24(2): 232-242, https://doi.org/10.16555/j.1006-8775.2018.02.011. |
[39]
|
TOLLEFSON J. El Niño monitoring system in failure mode[J]. Nature News, 2014, https://doi.org/10.1038/nature.2014.14582. |
[40]
|
HU S, FEDOROV A V. The extreme El Niño of 2015-2016 and the end of global warming hiatus[J]. Geophys Res Lett, 2017, 44(8): 3816-3824, https://doi.org/10.1002/2017GL072908. |
[41]
|
WORLD METEOROLOGICAL ORGANIZATION (WMO). WMO Statement on the State of the Global Climate in 2017[R/OL]. (2018)[2020-10-20]. https://library.wmo.int/doc_num.php?explnum_id=4453. |
[42]
|
WORLD METEOROLOGICAL ORGANIZATION (WMO). WMO Statement on the State of the Global Climate in 2018[R/OL]. (2019)[2020-10-20]. https://library.wmo.int/doc_num.php?explnum_id=5789. |
[43]
|
HU Z Z, KUMAR A, HUANG B, et al. Asymmetric evolution of El Niño and La Niña: the recharge/discharge processes and role of the of-equatorial sea surface height anomaly[J]. Climate Dyn, 2017, 49(7-8): 2737-2748, https://doi.org/10.1007/s00382-016-3498-4. |
[44]
|
SU J, ZHANG R, WANG H. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming[J]. Sci Rep, 2017, 7: 43735, https://doi.org/10.1038/srep43735. |
[45]
|
IPCC. Global Warming of 1.5℃: An IPCC special report on the impacts of global warming of 1.5 ℃ above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [R]. (2018), [2020-10-20]. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf. |