[1] |
MEISSNER T, WENTZ F J. Wind-vector retrievals under rain with passive satellite microwave radiometers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47 (9): 3065-3083, https://doi.org/10.1109/TGRS.2009.2027012. |
[2] |
YAO P, WAN J, WANG J, et al. Satellite retrieval of hurricane wind speeds using the AMSR2 microwave radiometer[J]. Chin J Oceanol Limnol, 2015, 33(5): 1104-1114, https://doi.org/10.1007/s00343-015-4131-9. |
[3] |
FANG Jia-bei, YANG Xiu-qun. The role of meridional wind stress in the tropical unstable air-sea interaction[J]. J Trop Meteor, 2003, 9(1): 95-104, https://doi.org/10.3969/j. issn.1006-8775.2003.01.012. doi: 10.3969/j.issn.1006-8775.2003.01.012 |
[4] |
WANG J, ZHANG J, WANG J. Sea surface wind speed retrieval under rain with the HY-2 microwave radiometer [J]. Acta Oceanologica Sinica, 2017, 36(7): 32-38, https://doi.org/10.1007/s13131-017-1080-5. |
[5] |
WU S T, FUNG A K. A noncoherent model for microwave emissions and backscattering from the sea surface[J]. J Geophys Res (1896-1977), 1972, 77(30): 5917-5929, https://doi.org/10.1029/JC077i030p05917. |
[6] |
WENTZ F J. A two-scale scattering model for foam-free sea microwave brightness temperatures[J]. J Geophys Res (1896-1977), 1975, 80(24): 3441-3446, https://doi.org/10.1029/JC080i024p03441. |
[7] |
MEISSNER T, WENTZ F J. The Emissivity of the Ocean Surface Between 6 and 90 GHz over a large range of wind speeds and earth incidence angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3004-3026, https://doi.org/10.1109/TGRS.2011.2179662. |
[8] |
WENTZ F J. A model function for ocean microwave brightness temperatures[J]. J Geophys Res: Oceans, 1983, 88(C3): 1892-1908, https://doi.org/10.1029/JC088iC03p01892. |
[9] |
HONG S, SHIN I. Wind speed retrieval based on sea surface roughness measurements from spaceborne microwave radiometers[J]. J Applied Meteorol Climatol, 2013, 52(2): 507-516, https://doi.org/10.1175/jamc-d-11-0209.1. |
[10] |
VINE D M L, KAO M, SWIFT C T, et al. Initial results in the development of a synthetic aperture microwave radiometer[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28(4): 614-619, https://doi.org/10.1109/TGRS.1990.572965. |
[11] |
VINE D M L. The sensitivity of synthetic aperture radiometers for remote sensing applications from space[J]. Radio Science, 1990, 25(4): 441-453, https://doi.org/10.1029/RS025i004p00441. |
[12] |
LI Q, CHEN K, GUO W, et al. An Aperture Synthesis Radiometer Millimeter Wave Band [M]// 2008: 1699-1701. |
[13] |
SCHANDA E. Multiple Wavelength Aperture Synthesis for Passive Sensing of the Earth's Surface[C]// 1979 Antennas and Propagation Society International Symposium, 1979: 762-763. |
[14] |
RUF C S, SWIFT C T, TANNER A B, et al. Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(5): 597-611, https://doi.org/10.1109/36.7685. |
[15] |
CHEN K, ZHU Y, GUO X, et al. Design of 8mm-band aperture synthetic radiometer and imaging experiment[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(6): 724-734, https://doi.org/10.1007/s10762-010-9631-2. |
[16] |
FENG M, AI W, CHEN G, et al. A Multiple linear regression algorithm for sea surface temperature retrieval by one-dimensional synthetic aperture microwave radiometry[J]. J Atmos Oceanic Technol, 2020, 37(9): 1753-1761, https://doi.org/10.1175/JTECH-D-20-0003.1. |
[17] |
LI Q, HU F, GUO W, et al. A General Platform for Millimeter Wave Synthetic Aperture Radiometers[C]// IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston: IEEE, 2008: 1156-1159. |
[18] |
AI W, FENG M, CHEN G, et al. Research on sea surface temperature retrieval by the one-dimensional synthetic aperture microwave radiometer, 1D-SAMR[J]. Acta Oceanologica Sinica, 2020, 39(5): 115-122, https://doi.org/10.1007/s13131-020-1540-1. |
[19] |
BETTENHAUSEN M H, SMITH C K, BEVILACQUA R M, et al. A nonlinear optimization algorithm for WindSat wind vector retrievals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(3): 597-610, https://doi.org/10.1109/TGRS.2005.862504. |
[20] |
BROWN S T, RUF C S, LYZENGA D R. An emissivity-based wind vector retrieval algorithm for the WindSat polarimetric radiometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(3): 611-621, https://doi.org/10.1109/TGRS.2005.859351. |
[21] |
KONER P, HARRIS A, MATURI E. A physical deterministic inverse method for operational satellite remote sensing: an application for sea surface temperature retrievals [J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53: 1-17, https://doi.org/10.1109/TGRS.2015.2424219. |
[22] |
MEISSNER T, WENTZ F. Ocean retrievals for WindSat: radiative transfer model, algorithm, validation[C]// Proceedings of OCEANS 2005 MTS/IEEE, 2005: 130-133. |
[23] |
WENTZ F J, MEISSNER T. Algorithm Theoretical Basis Document (ATBD) AMSR Ocean algorithm[R]. California: Remote Sensing Systems, 2000. |
[24] |
GOODBERLET M A, SWIFT C T, WILKERSON J C. Ocean surface wind speed measurements of the Special Sensor Microwave/Imager (SSM/I)[J]. IEEE Transactions on Geoscience & Remote Sensing, 1990, 28 (5): 1-828, https://doi.org/10.1109/36.58969. |
[25] |
OBLIGIS E, LABROUE S, AMAR A, et al. Neural networks to retrieve sea surface salinity from SMOS brightness temperatures[C]// IEEE International Geoscience & Remote Sensing Symposium, 2005. |
[26] |
KRASNOPOLSKY V, GEMMILL W, BREAKER L. A neural network multiparameter algorithm for SSM/I ocean retrievals[J]. Remote Sensing of Environment, 2000, 73: 133-142, https://doi.org/10.1016/S0034-4257 (00)00088-2. doi: 10.1016/S0034-4257(00)00088-2 |
[27] |
AN Da-wei, LU Feng, DOU Fang-li, et al. Modeling and quantitative retrieval of finite field for the tropical sea surface wind speed of the fy-3b microwave imager[J]. Journal of Tropical Meteorology, 2015, 21(1): 84-91, https://doi.org/10.16555/j.1006-8775.2015.01.009. |
[28] |
JENA B, SWAIN D, TYAGI A. Application of artificial neural networks for sea-surface wind-speed retrieval from IRS-P4 (MSMR) brightness temperature[J]. IEEE Geoscience & Remote Sensing Letters, 2010, 7(3): 567-571, https://doi.org/10.1109/LGRS.2010.2041632. |
[29] |
ALSWEISS S O, JELENAK Z, CHANG P S. Remote sensing of sea surface temperature using AMSR-2 measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9): 3948-3954, https://doi.org/10.1109/JSTARS.2017.2737470. |
[30] |
WANG Jin, ZHANG Jie, FAN Chenqing, et al. A new algorithm for sea-surface wind-speed retrieval based on the L-band radiometer onboard Aquarius[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(5): 1115-1123, https://doi.org/10.1007/s00343-015-4123-9. |
[31] |
SMITH C K, BETTENHAUSEN M, GAISER P W. A statistical approach to WindSat ocean surface wind vector retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 164-168, https://doi.org/10.1109/LGRS.2005.860661. |
[32] |
WILHEIT T T, CHANG A T C. An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer[J]. Radio Science, 1980, 15(3): 525-544, https://doi.org/10.1029/RS015i003p00525. |
[33] |
LOJOU J-Y, BERNARD R, EYMARD L. A simple method for testing brightness temperatures from satellite microwave radiometers[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11(2): 387-400, https://doi.org/10.1175/1520-0426(1994)011<0387:asmftb>2.0.co;2. doi: 10.1175/1520-0426(1994)011<0387:asmftb>2.0.co;2 |
[34] |
MILMAN A S, WILHEIT T T. Sea surface temperatures from the scanning multichannel microwave radiometer on Nimbus 7[J]. Journal of Geophysical Research: Oceans, 1985, 90(C6): 11631-11641, https://doi.org/10.1029/JC090iC06p11631. |
[35] |
LI J, PAN Y, CHEN Y, et al. Estimating typhoon waves based on the Modified ECMWF ERA-5 wind data[J]. Journal of Coastal Research, 2020, 95(sp1): 1177, https://doi.org/10.2112/SI95-228.1. |
[36] |
HILBURN K A, MEISSNER T, WENTZ F J, et al. Ocean vector winds from windsat two-look polarimetric radiances[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 918-931, https://doi.org/10.1109/TGRS.2015.2469633. |
[37] |
MEISSNER T, WENTZ F J. The complex dielectric constant of pure and sea water from microwave satellite observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(9): 1836-1849, https://doi.org/10.1109/TGRS.2004.831888. |
[38] |
WATERS J W: 2.3. 2-3 Absorption and Emission by Atmospheric Gases[J]. Methods in Experimental Physics, 1976: 142-176, https://doi.org/10.1016/S0076-695X(08)60684-5. |
[39] |
WANG Rui, SHI Shun-wen, YAN Wei, et al. Sea surface wind retrieval from polarimetric microwave radiometer in typhoon area[J]. Chinese Journal of Geophysics- Chinese Edition, 2014, 57: 738-751(in Chinese), https://doi.org/10.6038/cjg20140305. |
[40] |
BOBYLEV L P, ZABOLOTSKIKH E V, MITNIK L M, et al. Atmospheric water vapor and cloud liquid water retrieval over the arctic ocean using satellite passive microwave sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 283-294, https://doi.org/10.1109/TGRS.2009.2028018. |