[1] |
GAT J R, AIREY P L. Stable water isotopes in the atmosphere/biosphere/lithosphere interface: Scaling-up from the local to continental scale, under humid and dry conditions[J]. Global and Planetary Change, 2006, 51(1–2): 25–33, https://doi.org/10.1016/j.gloplacha.2005.12.004 |
[2] |
IMMERZEEL W W, RUTTEN M M, DROOGERS P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment, 2009, 113(2): 362–370, https://doi.org/10.1016/j.rse.2008.10.004 |
[3] |
MARZANO F S, CIMINI D, MONTOPOLI M. Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data[J]. Atmospheric Research, 2010, 97(4): 583–600, https://doi.org/10.1016/j.atmosres.2010.03.019 |
[4] |
PIPUNIC R C, RYU D, COSTELLOE J F, et al. An evaluation and regional error modeling methodology for near-real-time satellite rainfall data over Australia[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(20): 10,767–10,783, https://doi.org/10.1002/2015JD023512 |
[5] |
TERINK W, LEIJNSE H, VAN DEN EERTWEGH G, et al. Spatial resolutions in areal rainfall estimation and their impact on hydrological simulations of a lowland catchment[J]. Journal of Hydrology, 2018, 563: 319–335, https://doi.org/10.1016/j.jhydrol.2018.05.045 |
[6] |
TAPIADOR F J, TURK F J, PETERSEN W, et al. Global precipitation measurement: Methods, datasets and applications[J]. Atmospheric Research, 2012, 104: 70–97, https://doi.org/10.1016/j.atmosres.2011.10.021 |
[7] |
NIU J, CHEN J, WANG K, et al. Coherent modes in multi-scale variability of precipitation over the headwater catchments in the Pearl River basin, South China[J]. Hydrological Processes, 2017, 31(4): 948–955, https://doi.org/10.1002/hyp.11078 |
[8] |
VILLARINI G, MANDAPAKA P V, KRAJEWSKI W F, et al. Rainfall and sampling uncertainties: A rain gauge perspective[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D11): D11102, https://doi.org/10.1029/2007JD009214 |
[9] |
CROCHET P. Enhancing radar estimates of precipitation over complex terrain using information derived from an orographic precipitation model[J]. Journal of Hydrology, 2009, 377(3–4): 417–433, https://doi.org/10.1016/j.jhydrol.2009.08.038 |
[10] |
SUN Q, MIAO C, DUAN Q, et al. A review of global precipitation data sets: Data sources, estimation, and intercomparisons[J]. Reviews of Geophysics, 2018, 56(1): 79–107, https://doi.org/10.1002/2017RG000574 |
[11] |
LIU Y, FU Q, SONG P, et al. Satellite retrieval of precipitation: An overview[J]. Advances in Earth Science, 2011, 26(11): 1162–1172, in Chinese with English abstract. |
[12] |
SHEN Y, XIONG A, WANG Y, et al. Performance of high-resolution satellite precipitation products over China[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D2): D02114, https://doi.org/10.1029/2009JD012097 |
[13] |
Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate[DS]. Copernicus Climate Change Service Climate Data Store (CDS), 2017, 15(2): 2020. |
[14] |
AMJAD M, YILMAZ M T, YUCEL I, et al. Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography[J]. Journal of Hydrology, 2020, 584: 124707, https://doi.org/10.1016/j.jhydrol.2020.124707 |
[15] |
ALIJANIAN M, RAKHSHANDEHROO G R, MISHRA A K, et al. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN. TRMM, MSWEP over Iran[J]. International Journal of Climatology, 2017, 37(14): 4896–4914, https://doi.org/10.1002/joc.5131 |
[16] |
MANTAS V M, LIU Z, CARO C, et al. Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes[J]. Atmospheric Research, 2015, 163: 132–145, https://doi.org/10.1016/j.atmosres.2014.11.012 |
[17] |
AMJAD M, YILMAZ M T, YUCEL I, et al. Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography[J]. Journal of Hydrology, 2020, 584: 124707, https://doi.org/10.1016/j.jhydrol.2020.124707 |
[18] |
BECK H E, VAN DIJK A I J M, LEVIZZANI V, et al. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data[J]. Hydrology and Earth System Sciences, 2017, 21(1): 589–615, https://doi.org/10.5194/hess-21-589-2017 |
[19] |
LI Y, PANG B, ZHENG Z, et al. Evaluation of four satellite precipitation products over mainland China using spatial correlation analysis[J]. Remote Sensing, 2023, 15(7): 1823, https://doi.org/10.3390/rs15071823 |
[20] |
ZHOU Z, GUO B, XING W, et al. A comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over mainland China[J]. Atmospheric Research, 2020, 246: 105132, https://doi.org/10.1016/j.atmosres.2020.105132 |
[21] |
FU H, ZHU L, NZABARINDA V, et al. Error characteristic analysis of satellite-based precipitation products over mainland China[J]. Atmosphere, 2022, 13(8): 1211, https://doi.org/10.3390/atmos13081211 |
[22] |
YUAN X, YANG K, LU H, et al. Characterizing the features of precipitation for the Tibetan Plateau among four gridded datasets: Detection accuracy and spatio-temporal variabilities[J]. Atmospheric Research, 2021, 264: 105875, https://doi.org/10.1016/j.atmosres.2021.105875 |
[23] |
JIANG S, WEI L, REN L, et al. Evaluation of IMERG, TMPA, ERA5, and CPC precipitation products over mainland China: Spatiotemporal patterns and extremes[J]. Water Science and Engineering, 2023, 16(1): 45–56, https://doi.org/10.1016/j.wse.2022.05.001 |
[24] |
GUO B, XU T, YANG Q, et al. Multiple spatial and temporal scales evaluation of eight satellite precipitation products in a mountainous catchment of South China[J]. Remote Sensing, 2023, 15(5): 1373, https://doi.org/10.3390/rs15051373 |
[25] |
LI Y, PANG B, REN M, et al. Evaluation of performance of three satellite-derived precipitation products in capturing extreme precipitation events over Beijing, China[J]. Remote Sensing, 2022, 14(11): 2698, https://doi.org/10.3390/rs14112698 |
[26] |
HISAM E, MEHR A D, ALGANCI U, et al. Comprehensive evaluation of Satellite-Based and reanalysis precipitation products over the Mediterranean region in Turkey[J]. Advances in Space Research, 2023, 71(7): 3005–3021, https://doi.org/10.1016/j.asr.2022.11.007 |
[27] |
LIU C Y, ARYASTANA P, LIU G R, et al. Assessment of satellite precipitation product estimates over Bali Island[J]. Atmospheric Research, 2020, 244: 105032, https://doi.org/10.1016/j.atmosres.2020.105032 |
[28] |
WEI G, LÜ H, CROW W T, et al. Comprehensive evaluation of GPM-IMERG, CMORPH, and TMPA precipitation products with gauged rainfall over mainland China[J]. Advances in Meteorology, 2018, 2018: 024190, https://doi.org/10.1155/2018/3024190 |
[29] |
WEI L, JIANG S, REN L. Evaluation and comparison of three long-term gauge-based precipitation products for drought monitoring over mainland China from 1961 to 2016[J]. Natural Hazards, 2020, 104: 1371–1387, https://doi.org/10.1007/s11069-020-04222-2 |
[30] |
CHEN S, HONG Y, CAO Q, et al. Similarity and difference of the two successive V6 and V7 TRMM multi-satellite precipitation analysis performance over China[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 13,060–13,074, https://doi.org/10.1002/2013JD019964 |
[31] |
ZHAO H, YANG B, YANG S, et al. Systematical estimation of GPM-based global satellite mapping of precipitation products over China[J]. Atmospheric Research, 2018, 201: 206–217, https://doi.org/10.1016/j.atmosres.2017.11.005 |
[32] |
BECK H E, WOOD E F, PAN M, et al. MSWEP V2 global 3-hourly 0.1 precipitation: Methodology and quantitative assessment[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1 |
[33] |
BECK H E, VAN DIJK A I J M, LEVIZZANI V, et al. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data[J]. Hydrology and Earth System Sciences, 2017, 21(1): 589–615, https://doi.org/10.5194/hess-21-589-2017 |
[34] |
LIU Z, OSTRENGA D, TENG W, et al. Tropical Rainfall Measuring Mission (TRMM) precipitation data and services for research and applications[J]. Bulletin of the American Meteorological Society, 2012, 93(9): 1317–1325, https://doi.org/10.1175/BAMS-D-11-00152.1 |
[35] |
HUFFMAN G J, BOLVIN D T, NELKIN E J, et al. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of hydrometeorology, 2007, 8(1): 38–55, https://doi.org/10.1175/JHM560.1 |
[36] |
ASHOURI H, HSU K L, SOROOSHIAN S, et al. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies[J]. Bulletin of the American Meteorological Society, 2015, 96(1): 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1 |
[37] |
ALBERGEL C, DUTRA E, MUNIER S, et al. ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?[J]. Hydrology and Earth System Sciences, 2018, 22(6): 3515–3532, https://doi.org/10.5194/hess-22-3515-2018 |
[38] |
HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999–2049, https://doi.org/10.1002/qj.3803 |
[39] |
SUN G, WEI Y, WANG G, et al. Downscaling correction and hydrological applicability of the three latest high-resolution satellite precipitation products (GPM, GSMAP, and MSWEP) in the Pingtang Catchment, China[J]. Advances in Meteorology, 2022, 2022: 6507109, https://doi.org/10.1155/2022/6507109 |
[40] |
JIANG Q, LI W, FAN Z, et al. Evaluation of the ERA5 reanalysis precipitation dataset over the Chinese mainland[J]. Journal of Hydrology, 2021, 595: 125660, https://doi.org/10.1016/j.jhydrol.2020.125660 |