[1] |
HARRISON D L, SCOVELL R W, KITCHEN M. Highresolution precipitation estimates for hydrological uses[J]. Water Management, 2009, 162(2): 125-135, https://doi.org/10.1680/wama.2009.162.2.125 |
[2] |
TURK F J, ARKIN P, EBERT E E, et al. Evaluating HighResolution Precipitation Products[J]. Bulletin of the American Meteorological Society, 2008, 89(12): 1911- 1916, https://doi.org/10.1175/2008BAMS2652.1 |
[3] |
LAGASIO M, PARODI A, PULVIRENTI L, et al. A synergistic use of a high-resolution Numerical Weather Prediction model and high-resolution Earth Observation products to improve precipitation forecast[J]. Remote Sensing, 2019, 11(20): 2387, https://doi.org/10.3390/rs11202387 |
[4] |
HIRABAYASHI Y, KANAE S, EMORI S, et al. Global projections of changing risks of floods and droughts in a changing climate[J]. Hydrological Sciences Journal, 2008, 53(4): 754-772, https://doi.org/10.1623/hysj.53.4.754 |
[5] |
NIKOLOPOULOS E I, BARTSOTAS N S, ANAGNOSTOU E N, et al. Using high-resolution numerical weather forecasts to improve remotely sensed rainfall estimates: The case of the 2013 colorado flash flood[J]. Journal of Hydrometeorology, 2015, 16(4): 1742-1751, https://doi.org/10.1175/JHM-D-14-0207.1 |
[6] |
SHEN Y, XIONG A Y, WANG Y, et al. Performance of high-resolution satellite precipitation products over China [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D2): D02114, https://doi.org/10.1029/2009JD012097 |
[7] |
HONG Y, HSU K L, SOROOSHIAN S, et al. Precipitation Estimation from Remotely Sensed Imagery using an Artificial Neural Network Cloud Classification System[J]. Journal of Applied Meteorology and Climatology, 2004, 43(12): 1834-1853, https://doi.org/10.1175/JAM2173.1 |
[8] |
HUFFMAN G J, BOLVIN D T, NELKIN E J, et al. The TRMM Multisatellite Precipitation Analysis(TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38-55, https://doi.org/10.1175/JHM560.1 |
[9] |
SIMOLO C, BRUNETTI M, MAUGERI M, et al. Improving estimation of missing values in daily precipitation series by a probability density functionpreserving approach[J]. International Journal of Climatology, 2010, 30(10): 1564-1576, https://doi.org/10.1002/joc.1992 |
[10] |
CHEN M Y, KUMAR A. Influence of ENSO SSTs on the spread of the probability density function for precipitation and land surface temperature[J]. Climate Dynamics, 2015, 45(3-4): 965-974, https://doi.org/10.1007/s00382-014-2336-9 |
[11] |
PAN Y, SHEN Y, YU J J, et al. An experiment of highresolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method[J]. Acta Meteorologica Sinica, 2015, 73(1): 177-186(in Chinese), https://doi.org/10.11676/qxxb2015.010 |
[12] |
SHEN Y, HONG Z, PAN Y, et al. China's 1 km Merged Gauge, Radar and Satellite Experimental Precipitation Dataset[J]. Remote Sensing, 2018, 10(2): 264, https://doi.org/10.3390/rs10020264 |
[13] |
PAN Y, SHEN Y, YU J J, et al. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique[J]. Acta Meteorologica Sinica, 2012, 70(6): 1381-1389(in Chinese), https://doi.org/10.11676/qxxb2012.116 |
[14] |
SHEN Y, ZHAO P, PAN Y, et al. A high spatiotemporal gauge-satellite merged precipitation analysis over China [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(6): 3063-3075, https://doi.org/10.1002/2013JD020686 |
[15] |
PAN Y, GU J X, YU J J, et al. Test of merging methods for multi-source observed precipitation products at high resolution over China[J]. Acta Meteorologica Sinica, 2018, 76(5): 755-766(in Chinese), https://doi.org/10.11676/qxxb2018.034 |
[16] |
SHI C X, PAN Y, GU J X, et al. A review of multi-source meteorological data fusion products[J]. Acta Meteorologica Sinica, 2019, 77(4): 774-783(in Chinese), https://doi.org/10.11676/qxxb2019.043 |
[17] |
PAN Y, GU J X, XU B, et al. Advances in multi-source precipitation merging research[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 143- 152(in Chinese), https://doi.org/10.3969/j.issn.2095-1973.2018.01.019 |
[18] |
HAN S, SHI C X, JIANG Z W, et al. Development and progress of High Resolution CMA Land Surface Data Assimilation System[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 102-108(in Chinese), https://doi.org/10.3969/j.issn.2095-1973.2018.01.013 |
[19] |
TIE, R A, SHI C X, WAN G, et al. CLDASSD: Reconstructing fine textures of temperature field using super-resolution technology[J]. Advances in Atmospheric Sciences, 2022, 39(1): 117-130, https://doi.org/10.1007/s00376-021-0438-y |
[20] |
LI S Y, HUANG X L, WU W, et al. Evaluation of CMPAS precipitation products over Sichuan, China[J]. Atmospheric and Oceanic Science Letters, 2022, 15(2): 1674-2834, https://doi.org/10.1016/j.aosl.2021.100129 |
[21] |
WU W, HUANG X L, XU X L, et al. Application assessment of merged precipitation analysis products in Sichuan Province[J]. Desert and Oasis Meteorology, 2021, 15(4): 1-8(in Chinese), https://doi.org/10.12057/j.issn.1002-0799.2021.04.001 |
[22] |
PANG Z H, SHI C X, GU J X, et al. Assessment of a gauge-radar-satellite merged hourly precipitation product for accurately monitoring the characteristics of the superstrong Meiyu precipitation over the Yangtze River basin in 2020[J]. Remote Sensing, 2021, 13(19): 3850, https://doi.org/10.3390/rs13193850 |
[23] |
BAI L, WEN Y Q, SHI C X, et al. Which precipitation product works best in the Qinghai-Tibet Plateau, multisource blended data, global/regional reanalysis data, or satellite retrieved precipitation data?[J]. Remote Sensing, 2020, 12(4): 683, https://doi.org/10.3390/rs12040683 |
[24] |
GUO X, LONG K J, FAN J L, et al. Comparative assessment of four merged precipitation products in a sustained heavy rainfall process in Sichuan[J]. Plateau and Mountain Meteorology Research, 2021, 41(2): 42-52(in Chinese), https://doi.org/10.3969/j.issn.1674-2184.2021.02.005 |
[25] |
YU J J, SHEN Y, PAN Y, et al. Improvement of satellitebased precipitation estimates over China based on probability density function matching method[J]. Journal of Applied Meteorological Science, 2013, 24(5): 544-553(in Chinese), https://doi.org/10.3969/j.issn.1001-7313.2013.05.004 |
[26] |
WANG Y D, NAN Z T, CHEN H, et al. Correction of CMORPH daily precipitation data over the QinghaiTibetan Plateau with K-Nearest Neighbor model[J]. Remote Sensing Technology and Application, 2016, 31(3): 607-616(in Chinese), https://doi.org/10.11873/j.issn.1004-0323.2016.3.0607 |
[27] |
JIA S F, ZHU W B, LŰ A F, et al. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011, 115(12): 3069- 3079, https://doi.org/10.1016/j.rse.2011.06.009 |
[28] |
LIU Y Q, FAN G Z, ZHOU D W, et al. Variability of NDVI in winter and spring on the tibetan plateau and their relationship with summer precipitation[J]. Acta Meteorologica Sinica, 2007, 65(6): 959-967(in Chinese), https://doi.org/10.11676/qxxb2007.090 |
[29] |
BEUCHAT X, SCHAEFLI B, SOUTTER M, et al. Toward a robust method for subdaily rainfall downscaling from daily data[J]. Water Resources Research, 2011, 47(9): W09524, https://doi.org/10.1029/2010WR010342 |
[30] |
HUANG M M, LIN R S, HUANG S, et al. A novel approach for precipitation forecast via improved Knearest neighbor algorithm[J]. Advanced Engineering Informatics, 2017, 33: 89-95, https://doi.org/10.1016/j.aei.2017.05.003 |
[31] |
YANG Z D, LIU P, YANG Y. Convective/stratiform precipitation classification using ground-based Doppler radar data based on the K-nearest neighbor algorithm[J]. Remote Sensing, 2019, 11(19): 2277, https://doi.org/10.3390/rs11192277 |
[32] |
CHEN H, NING C, NAN Z T, et al. Correction of the daily precipitation data over the Tibetan Plateau with machine learning models[J]. Journal of Glaciology and Geocryology, 2017, 9(3): 583-592(in Chinese), https://doi.org/10.7522/j.issn.1000-0240.2017.0065 |
[33] |
XIE Y Y, WANG J J. Preliminary study on the deviation and cause of precipitation prediction of GRAPES kilometer scale model in southwest complex terrain area [J]. Acta Meteorologica Sinica, 2021, 79(5): 732-749(in Chinese), https://doi.org/10.11676/qxxb2021.053 |
[34] |
LU X N, HONG J, WANG L L, et al. Drought risk assessment in complex landform area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1): 162-169(in Chinese), https://doi.org/10.3969/j.issn.1002-6819.2015.01.023 |
[35] |
HUANG X L, XU X L, WU W, et al. Analysis of terrain characteristics of meteorological stations in Sichuan Province based on DEM[J]. Plateau and Mountain Meteorology Research, 2022, 42(1): 135-142(in Chinese), https://doi.org/10.3969/j.issn.1674-2184.2022.01.019 |
[36] |
LUO Y, CHEN C, ZHANG T Y, et al. Analysis on the characteristics of atmospheric self-cleaning ability index in Sichuan Province from 1981 to 2017[J]. China Environmental Science, 2021, 41(2): 527-536(in Chinese), https://doi.org/10.19674/j.cnki.issn1000-6923.2021.0059 |
[37] |
ZENG B, CHEN Y, WANG Q, et al. Temporal and spatial characteristics of different classes and various durations of precipitation in Sichuan Province from 1961 to 2016 [J]. Journal of Glaciology and Geocryology, 2019, 41(2): 444-456(in Chinese), https://doi.org/10.7522/j.issn.1000-0240.2019.0012 |
[38] |
ZHANG P Z. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 2013, 584: 7-22, https://doi.org/10.1016/j.tecto.2012.02.021 |
[39] |
CHEN Y, XIE S D. Temporal and spatial visibility trends in the Sichuan Basin, China, 1973 to 2010[J]. Atmospheric Research, 2012, 112: 25-34, https://doi.org/10.1016/j.atmosres.2012.04.009 |
[40] |
LI P, CHEN T T, LIU S Q. Spatiotemporal dynamics and drivers of farmland changes in Panxi Mountainous Region, China[J]. Sustainability, 2016, 8(11): 1209, https://doi.org/10.3390/su8111209 |
[41] |
ABDI H, WILLIAMS L J. Principal component analysis [J]. Wiley Interdisciplinary Reviews: Computational statistics, 2010, 2(4): 433-459, https://doi.org/10.1002/wics.101 |
[42] |
LASISI A, ATTOH-OKINE N. Principal components analysis and track quality index: A machine learning approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 91: 230-248, https://doi.org/10.1016/j.trc.2018.04.001 |
[43] |
BERGSTRA J, BENGIO Y. Random search for hyperparameter optimization[J]. Journal of Machine Learning Research, 2012, 13(1): 281-305. |
[44] |
REFAEILZADEH P, TANG L, LIU H, et al. Crossvalidation[M]//LIU L, ÖZSU M T(eds), Encyclopedia of Database Systems. New York: Springer, 2009: 532-538. |
[45] |
SAGI O, ROKACH L.Ensemble learning: A survey[J].WIREs Data Mining and Knowledge Discovery, 2018, 8(4): e1249, https://doi.org/10.1002/widm.1249 |
[46] |
DONG X B, YU Z W, CAO W M, et al.A survey on ensemble learning[J].Frontiers of Computer Science, 2020, 14(2): 241-258, https://doi.org/10.1007/s11704-019-8208-z |
[47] |
BELGIU M, DRĂGUŢL.Random forest in remote sensing: A review of applications and future directions [J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31, https://doi.org/10.1016/j.isprsjprs.2016.01.011 |
[48] |
CAO Y, MIAO Q G, LIU J C, et al.Advance and prospects of AdaBoost algorithm[J].Acta Automatica Sinica, 2013, 39(6): 745-758, https://doi.org/10.1016/S1874-1029(13)60052-X |
[49] |
RÄTSCH G, ONODA T, MÜLLER K R.Soft Margins for AdaBoost[J].Machine Learning, 2001, 42(3): 287-320, https://doi.org/10.1023/A:1007618119488 |
[50] |
BAUER E, KOHAVI R.An empirical comparison of voting classification algorithms: Bagging, boosting, and variants[J].Machine Learning, 1999, 36(1): 105-139, https://doi.org/10.1023/A:1007515423169 |