[1] MADDOX R A, CHAPPELL C F, HOXIT L R. Synoptic and meso-α scale aspects of flash flood events[J]. Bulletin of the American Meteorological Society, 1979, 60(2): 115–123, https://doi.org/10.1175/1520-0477-60.2.115
[2] MOORE J T, GLASS F H, GRAVES C E, et al. The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States[J]. Weather and Forecasting, 2003, 18(5): 861–878, https://doi.org/10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2 doi: 10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2
[3] SCHUMACHER R S, JOHNSON R H. Characteristics of US extreme rain events during 1999–2003[J]. Weather and Forecasting, 2006, 21(1): 69–85, https://doi.org/10.1175/WAF900.1
[4] HOUZE R A. Mesoscale convective systems[J]. Review of Geophysics, 2004, 42: RG4003, https://doi.org/10.1029/2004RG000150
[5] PARKER M D, JOHNSON R H. Simulated convective lines with leading precipitation, Part Ⅱ: Evolution and maintenance[J]. Journal of Atmospheric Sciences, 2004, 61(14): 1656–1673, https://doi.org/10.1175/1520-0469(2004)061<1656:SCLWLP>2.0.CO;2 doi: 10.1175/1520-0469(2004)061<1656:SCLWLP>2.0.CO;2
[6] SCHUMACHER R S, JOHNSON R H. Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J]. Monthly Weather Review, 2005, 133(4): 961–976, https://doi.org/10.1175/MWR2899.1
[7] STORM B A, PARKER M D, JORGENSEN D P. A convective line with leading stratiform precipitation from BAMEX[J]. Monthly Weather Review, 2007, 135(5): 1769–1785, https://doi.org/10.1175/MWR3392.1
[8] GALLUS J W A, SNOOK N A, JOHNSON E V. Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study[J]. Weather and Forecasting, 2008, 23(1): 101–113, https://doi.org/10.1175/2007WAF2006120.1
[9] HOUZE R A, SMULL B F, DODGE P. Mesoscale organization of springtime rainstorms in Oklahoma[J]. Monthly Weather Review, 1990, 118(3): 613–654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2 doi: 10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2
[10] PETTET C R, JOHNSON R H. Airflow and precipitation structure of two leading stratiform mesoscale convective systems determined from operational datasets[J]. Weather and Forecasting, 2003, 18(5): 685–699, https://doi.org/10.1175/1520-0434(2003)018<0685:AAPSOT>2.0.CO;2 doi: 10.1175/1520-0434(2003)018<0685:AAPSOT>2.0.CO;2
[11] JIRAK I L, COTTON W R, MCANELLY, R. L. Satellite and radar survey of mesoscale convective system development[J]. Monthly Weather Review, 2003, 131(10): 2428–2449, https://doi.org/10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2 doi: 10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO;2
[12] WANG X, CUI C. Analysis of the linear mesoscale convective systems during the meiyu period in the middle and lower reaches of the Yangtze River, Part Ⅰ: Organization mode features[J]. Acta Meteorologica Sinica, 2012, 70(5): 909–923, https://dx.doi.org/10.11676/qxxb2012.077, in Chinese with English abstract.
[13] ZHENG L L, SUN J H, ZHANG X L, et al. Organizational modes of mesoscale convective Systems over central east China[J]. Weather and Forecasting, 2013, 28(5): 1081–1098, https://doi.org/10.1175/WAF-D-12-00088.1
[14] CHEN T, CHEN B, YU C, et al. Analysis of multiscale features and ensemble forecast sensitivity for MCSs in front-zone and warm sector during pre-summer rainy season in South China[J]. Meteorological Monthly, 2020, 46(9): 1129–1142, http://dx.doi.org/10.7519/j.issn.1000-0526.2020.09.001, in Chinese with English abstract.
[15] LI S, MENG Z Y, WU N G. A preliminary study on the organizational modes of mesoscale convective systems associated with warm sector heavy rainfall in South China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(16): e2021JD034587, https://doi.org/10.1029/2021JD034587
[16] XUE C, SHEN X, DING Z, et al. Organiztional modes of Spring and Summer convective storms and associated severe weather over Southern China during 2015–19[J]. Monthly Weather Review, 2022, 150(11): 3031–3049, https://doi.org/10.1175/MWR-D-22-0061.1
[17] ZHANG Y, LU R, SUN J, et al. Organizational modes and environmental conditions of the severe convective weathers produced by the mesoscale convective systems in South China[J]. Journal of Tropical Meteorology, 2023, 29(1): 26–38, https://doi.org/10.46267/j.1006-8775.2023.003
[18] ZHANG L, MIN J, ZHUANG X, et al. General features of extreme rainfall events produced by MCSs over East China during 2016–17[J]. Monthly Weather Review, 2019, 147(7): 2693–2714, https://doi.org/10.1175/MWR-D-18-0455.1
[19] WANG J, WANG H J, YANG H. Comparison of satellite-estimated and model-forecasted rainfall data during a dealy debris-flow event in Zhouqu, Northwest China[J]. Atmospheric and Oceanic Science Letters, 2016, 9(2): 139–145, http://dx.doi.org/10.1080/16742834.2016.1142825
[20] WANG B, HUANG Y, WEI D, et al. Structure analysis of heavy precipitation over the eastern slope of the Tibetan Plateau based on TRMM data[J]. Acta Meteorologica Sinica, 2017, 75(6) : 966–980, https://dx.doi.org/10.11676/qxxb2017.062, in Chinese with English abstract.
[21] YANG K, JI X, MAO L, et al. Analysis on influence of Helan mountain topography on extraordinary severe flood-causing rainstorm under abnormal circulation background occurring on 21 August[J]. Journal of Natural Disasters, 2020, 29(1): 132–142, https://10.13577/j.jnd.2020.0114, in Chinese with English abstract. doi: 10.13577/j.jnd.2020.0114
[22] BLUESTEIN H B, JAIN M H. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the Spring[J]. Journal of the Atmospheric Scicences, 1985, 42(16): 1711–1732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2 doi: 10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2
[23] BLUESTEIN H B, MARX G T, JAIN M H. Formation of mesoscale lines of precipitation: Nonsevere squall lines in Oklahoma during the spring[J]. Monthly Weather Review, 1987, 115(11): 2719–2727, https://doi.org/10.1175/1520-0493(1987)115<2719:FOMLOP>2.0.CO;2 doi: 10.1175/1520-0493(1987)115<2719:FOMLOP>2.0.CO;2
[24] BLANCHARD D O. Mesoscale convective patterns of the southern High Plains[J]. Bulletin of the American Meteorological Society, 1990, 71(7): 994–1005, https://doi.org/10.1175/1520-0477(1990)071<0994:MCPOTS>2.0.CO;2 doi: 10.1175/1520-0477(1990)071<0994:MCPOTS>2.0.CO;2
[25] LOEHRER S M, JOHNSON R H. Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective complexes[J]. Monthly Weather Review, 1995, 123(3): 600–621, https://doi.org/10.1175/1520-0493(1995)123<0600:SPAPLC>2.0.CO;2 doi: 10.1175/1520-0493(1995)123<0600:SPAPLC>2.0.CO;2
[26] ZBYNĚK S, BROŽKOVÁ R, POPOVÁ J, et al. Evaluation of ALADIN NWP model forecasts by IR10.8μm and WV06.2μm brightness temperatures measured by the geostationary satellite Meteosat Second Generation[J]. Atmospheric Research, 2022, 265(1): 105920, https://doi.org/10.1016/j.atmosres.105920
[27] BEDKA K M, BRUNNER J, DWORAK R, et al. Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients[J]. Journal of Applied Meteorological Climatology, 2010, 49(2): 181–202, https://doi.org/10.1175/2009JAMC2286.1
[28] HILGENDORF E R, JOHNSON R H. A study of the evolution of mesoscale convective systems using WSR-88D data[J]. Weather and Forecasting, 1998, 13(2): 437–452, https://doi.org/10.1175/1520–0434(1998)013,0437:ASOTEO.2.0.CO;2
[29] HANE C E, HAYNES J A, ANDRA D L, et al. The evolution of morning convective systems over the U.S. Great Plains during the warm season, Part Ⅱ: A climatology and the influence of environmental factors[J]. Monthly Weather Review, 2008, 136(3): 929–944, https://doi.org/10.1175/2007MWR2016.1
[30] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Monthly Weather Review, 2000, 128(10): 3413–3436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2 doi: 10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
[31] MÜLLER R, HAUSSLER S, JERG M, et al. A novel approach for the detection of developing thunderstorm cells[J]. Remote Sensing, 2019, 11(4): 443, https://doi.org/10.3390/rs11040443
[32] MÜLLER R, HAUSSLER S, JERG M. The role of NWP filter for the satellite based detection of cumulonimbus clouds[J]. Remote Sensing, 2018, 10(3): 386, https://doi.org/10.3390/rsl0030386.
[33] ZOU X, ZHUGE X, WENG F. Characterization of bias of Advanced Himawari Imager infrared observations from NWP background simulations using CRTM and RTTOV[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(12): 2553–2567, https://doi.org/10.1175/JTECH-D-16-0105.1
[34] LEE Y, KUMMEROW C D, ZUPANSKI J. A simplified method for the detection of convection using high-resolution imagery from GOES-16[J]. Atmospheric Measurement Techniques, 2021, 14(5): 3755–3771, https://doi.org/10.5194/amt-14-3755-2021
[35] ZHANG X, SHEN W, ZHUGE X, et al. Statistical characteristics of mesoscale convective systems Initiated over the Tibetan Plateau in Summer by Fengyun satellite and precipitation estimates[J]. Remote Sensing, 2021, 13(9): 1652, https://doi.org/10.3390/rs13091652
[36] POPE M, JAKOB C, REEDER M J. Convective systems of the north Australian monsoon[J]. Journal of Climate, 2008, 21(19): 5091–5112, https://doi.org/10.1175/2008JCLI2304.1
[37] ZINNER T, MANNSTEIN H, TAFFERNER A. Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data[J]. Meteorology and Atmospheric Physics, 2008, 101: 191–210, https://doi.org/10.1007/s00703-008-0290-y
[38] KROEGER T, TIMOFTE R, DAI D, et al. Fast optical flow using dense inverse search[J]. ArXiv, 2016, https://doi.org/10.48550/arXiv.1603.03590
[39] GONZALEZ R, WOODS R. Digital Image Processing[M]. Boston: Addison-Wesley Publishing Company, 1992.
[40] DUAN M, XIA J, YAN Z, et al. Reconstruction of the radar reflectivity of convective storms based on deep learning and Himawari-8 observations[J]. Remote Sensing, 2021, 13(16): 3330, https://doi.org/10.3390/rs13163330
[41] HILBURN K A, EBERT-UPHOFF I, MILLER S D. Development and interpretation of a neural-network-based synthetic radar reflectivity estimator using GOES-R satellite observations[J]. Journal of Applied Meteorology and Climatology, 2020, 60(1): 3–21, https://doi.org/10.1175/JAMC-D-20-0084.1
[42] DI D, ZHOU R, LAI R. Parallax shift effect correction and analysis based on Fengyun-4A advanced imager[J]. Acta Meteorologica Sinica, 2022, 80(4): 632–642, https://doi.org/10.11676/qxxb2022.044, in Chinese with English abstract.
[43] ZHOU W, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612, https://doi.org/10.1109/TIP.2003.819861
[44] TAPIADOR F J, TURK F J, PETERSON W, et al. Global precipitation measurement: Methods, datasets and applications[J]. Atmospheric Research, 2012, 104–105: 70‒97, https://doi.org/10.1016/j.atmosres.2011.10.02