[1] |
EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years [J]. Nature, 2005, 436(1): 686–688, https://doi.org/10.1038/nature03906 |
[2] |
MENDELSOHN R, EMANUEL K, CHONABAYASHI S, et al. The impact of climate change on global tropical cyclone damage [J]. Nature Climate Change, 2012, 2(3): 205–209, https://doi.org/10.1038/NCLIMATE1357 |
[3] |
HUANG M F, WANG Q, LIU M F, et al. Increasing typhoon impact and economic losses due to anthropogenic warming in Southeast China [J]. Scientific Reports, 2022, 12(1): 14048, https://doi.org/10.1038/s41598-022-17323-8 |
[4] |
PANDEY R S, LIOU Y. Typhoon strength rising in the past four decades [J]. Weather and Climate Extremes, 2022, 36(1): 100446, https://doi.org/10.1016/j.wace.2022.100446 |
[5] |
UTSUMI N, KIM H. Observed influence of anthropogenic climate change on tropical cyclone heavy rainfall [J]. Nature Climate Change, 2022, 12(5): 436–440, https://doi.org/10.1038/s41558-022-01344-2 |
[6] |
HU L T, WEN T, SHAO Y C, et al. Economic impacts of tropical cyclone-induced multiple hazards in China [J]. Earth's Future, 2023, 11(9): e2023EF003622, https://doi.org/10.1029/2023EF003622 |
[7] |
GAO S Z, ZHANG S J, LU X Y, et al. Circulation characteristics and thermal and dynamic conditions 48 hours before typhoon formation in the South China Sea [J]. Journal of Applied Meteorological Science, 2021, 32(3): 272–288, https://doi.org/10.11898/1001-7313.20210302 |
[8] |
KRISHNAMURTI T N, PATTNAIK S, STEFANOVA L, et al. The hurricane intensity issue [J]. Monthly Weather Review, 2005, 13(7): 1886–1912, https://doi.org/10.1175/MWR2954.1 |
[9] |
ROGERS R, ABERSON S, BLACK M, et al. The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts [J]. Bulletin of the American Meteorological Society, 2006, 87(11): 1523–1537, https://doi.org/10.1175/BAMS-87-11-1523 |
[10] |
TAKAHASHI T, NOLAN D S, MCNOLDY B D. The vortex structure and near-surface winds of Typhoon Faxai (2019) during landfall, Part Ⅱ: Evaluation of WRF simulations [J]. Quarterly Journal of the Royal Meteorological Society, 2024, 150(760): 1643–1667, https://doi.org/10.1002/qj.4663 |
[11] |
LI X L, PU Z X. Sensitivity of numerical simulation of early rapid intensification of hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations [J]. Monthly Weather Review, 2008, 136(12): 4819–4838, https://doi.org/10.1175/2008MWR2366.1 |
[12] |
RICCHI A, MIGLIETTA M M, BARBARIOL F, et al. Sensitivity of a Mediterranean tropical-like cyclone to different model configurations and coupling strategies [J]. Atmosphere, 2017, 8(5): 92, https://doi.org/10.3390/atmos8050092 |
[13] |
HONG S Y, LIM J. The WRF single-moment 6-class microphysics scheme (WSM6) [J]. Asia-pacific Journal of Atmospheric Sciences, 2006, 42(2): 129–151. |
[14] |
EFSTATHIOU G A, ZOUMAKIS N M, MELAS D, et al. Sensitivity of WRF to boundary layer parameterizations in simulating a heavy rainfall event using different microphysical schemes: Effect on large-scale processes [J]. Atmospheric Research, 2013, 132(1): 125–143, https://doi.org/10.1016/j.atmosres.2013.05.004 |
[15] |
SUN W Q, LI C Y. A review of atmospheric boundary layer parameterization schemes in numerical models [J]. Journal of Marine Meteorology, 2018, 38(3): 11–19, https://doi.org/10.19513/j.cnki.issn2096-3599.2018.03.002, in Chinese with English abstract |
[16] |
TYMVIOS F, DEMETRIS C, SILAS M, et al. Intercomparison of boundary layer parameterizations for summer conditions in the eastern Mediterranean island of Cyprus using the WRF-ARW model [J]. Atmospheric Research, 2018, 208(1): 45–59, https://doi.org/10.1016/j.atmosres.2017.09.011 |
[17] |
LI X, DAVIDSON N E, DUAN Y H, et al. Analysis of an ensemble of high-resolution WRF simulations for the rapid intensification of super typhoon Rammasun (2014) [J]. Advances in Atmospheric Sciences, 2020, 37(2): 187–210, https://doi.org/10.1007/s00376-019-8274-z |
[18] |
GOPALAKRISHNAN S, HAZELTON A, ZHANG J A. Improving hurricane boundary layer parameterization scheme based on observations [J]. Earth and Space Science, 2021, 8(3): 1–13, https://doi.org/10.1029/2020EA001422 |
[19] |
STULL R B. An Introduction to Boundary Layer Meteorology [M]. Amsterdam: Kluwer Academic Publishers, 1988. |
[20] |
STENSRUD D J. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models [M]. Cambridge: Cambridge University Press, 2007. |
[21] |
STULL R B. Static stability-an update [J]. Bulletin of the American Meteorological Society, 1991, 72(10): 1521–1529, https://doi.org/10.1175/1520-0477(1991)072<1521:ssu>2.0.co;2 doi: 10.1175/1520-0477(1991)072<1521:ssu>2.0.co;2 |
[22] |
RUAN Z X, LI J N, LI F Z, et al. Effects of local and non-local closure PBL schemes on the simulation of super typhoon Mangkhut (2018) [J]. Frontiers of Earth Science, 2022, 16(2): 277–290, https://doi.org/10.1007/s11707-020-0854-9 |
[23] |
SHEN W Q, LU Z B, YE G L, et al. Exploring the impact of planetary boundary layer schemes on rainfall forecasts for typhoon Mujigae, 2015[J]. Atmosphere, 2022, 13(2): 220–237, https://doi.org/10.16032/10.3390/atmos13020220 |
[24] |
HUANG W Y, SHEN X Y, WANG W G, et al. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations [J]. Chinese Journal of Geophysics, 2014, 57(5): 1399–1414, https://doi.org/10.1002/cjg2.20123 |
[25] |
NOLAN D S, ZHANG J A, STERN D P. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003), Part Ⅰ: Initialization, maximum winds, and the outercore boundary layer [J]. Monthly Weather Review, 2009, 137(11): 3651–3674, https://doi.org/10.1175/2009MWR2785.1 |
[26] |
NOLAN D S, ZHANG J A, STERN D P. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003), Part Ⅱ: Inner-core boundary layer and eyewall structure [J]. Monthly Weather Review, 2009, 137(11): 3675–3698, https://doi.org/10.1175/2009MWR2786.1 |
[27] |
DING C H, LI J N, ZHAO Y J, et al. The influence of boundary layer parameterization schemes on autumn typhoon Sarika (2016) in South China Sea [J]. Journal of Tropical Meteorology, 2018, 34(5): 657–673, https://doi.org/10.16032/j.issn.1004-4965.2018.05.008, in Chinese with English abstract |
[28] |
LIU J J, ZHANG F M, PU Z X. Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes [J]. Advances in Atmospheric Sciences, 2017, 34(4): 482–496, https://doi.org/10.1007/s00376-016-6209-5 |
[29] |
ROTUNNO R, BRYAN G H. Effects of parameterized diffusion on simulated hurricanes [J]. Journal of the Atmospheric Sciences, 2012, 69(7): 2284–2299, https://doi.org/10.1175/JAS-D-11-0204.1 |
[30] |
WEN X P, LONG X, ZHANG S W, et al. Numerical studies of planetary boundary layer parameterization sciences on super typhoon Sanba (2012) during its initial stage [J]. Journal of Tropical Meteorology, 2018, 24(3): 288–299, https://doi.org/10.16555/j.1006-8775.20l8.03.003 |
[31] |
HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Monthly Weather Review, 2006, 134(9): 2318–2341, https://doi.org/10.1175/MWR3199.1 |
[32] |
HONG S Y, PAN H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model [J]. Monthly Weather Review, 1996, 124(10): 2322–2339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 |
[33] |
WANG C X. Experiments of influence of planetary boundary layer parameterization on Muifa typhoon prediction [J]. Advance in Earth Sciences, 2013, 28(2): 197–208, https://doi.org/10.11867/j.issn.1001-8166.2013.02.0197 |
[34] |
LOH W T, JUNENG L, TANGANG F T. Sensitivity of typhoon Vamei (2001) simulation to planetary boundary layer parameterization using PSU/NCAR MM5[J]. Pure and Applied Geophysics, 2011, 168(10): 1799–1811, https://doi.org/10.1007/s00024-010-0176-z |
[35] |
JIANG L F, YIN Y, LIU C X. Comparison of the thermal and dynamic boundary layer structure with different boundary layer parameterizations during typhoon "Molave" [J]. Marine Forecasts, 2017, 34(4): 20–31, https://doi.org/10.11737/j.issn.1003-0239.2017.04.003 |
[36] |
WANG Y X, ZHONG Z, SUN Y, et al. The mechanism analysis of the track deviation of tropical cyclone Megi (2010) simulated with two planetary boundary layer schemes [J]. Chinese Journal of Geophysics, 2017, 60(7): 2545–2555, https://doi.org/10.6038/cjg20170704 |
[37] |
ZHANG F M, PU Z X, WANG C H. Effects of boundary layer vertical mixing on the evolution of hurricanes over land [J]. Monthly Weather Review, 2017, 145(6): 2343–2361, https://doi.org/10.1175/MWR-D-16-0421.1 |
[38] |
ZHU P, MENELAOU K, ZHU Z D. Impact of subgrid-scale vertical turbulent mixing on eyewall asymmetric structures and mesovortices of hurricanes [J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(679): 416–438, https://doi.org/10.1002/qj.2147 |
[39] |
SMITH R K, THOMSEN G L. Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model [J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(652): 1671–1685, https://doi.org/10.1002/qj.687 |
[40] |
KANADA S, WADA A, NAKANO M, et al. Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model [J]. Journal of Geophysical Research: Atmospheres, 2012, 117(3): 107–120, https://doi.org/10.1029/2011JD016582 |
[41] |
ZHANG J A, ROGERS R F, TALLAPRAGADA V. Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF [J]. Monthly Weather Review, 2016, 145(4): 1413–1426, https://doi.org/10.1175/MWR-D-16-0129.1 |
[42] |
ZHANG J A, NOLAN D S, ROFERS R F, et al. Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF [J]. Monthly Weather Review, 2015, 143(8): 3136–3155, https://doi.org/10.1175/MWR-D-14-00339.1 |
[43] |
CHEN X M, BRYAN G H, ZHANG J A, et al. A framework for simulating the tropical cyclone boundary layer using large-eddy simulation and its use in evaluating PBL parameterizations [J]. Journal of the Atmospheric Sciences, 2021, 78(11): 3559–3574, https://doi.org/10.1175/JAS-D-20-0227.1 |
[44] |
CHEN X M, BRYAN G H, HAZELTON A, et al. Evaluation and improvement of a TKE-Based Eddy-Diffusivity Mass-Flux (EDMF) planetary boundary layer scheme in hurricane conditions [J]. Weather and Forecasting, 2022, 37(6): 935–951, https://doi.org/10.1175/WAF-D-21-0168.1 |
[45] |
ZHONH Q J, ZHANG L F, LI J P, et al. Estimating the predictability limit of tropical cyclone tracks over the western North Pacific using observational data [J]. Advances in Atmospheric Sciences, 2018, 35(12), 1–34, https://doi.org/10.1007/s00376-018-8008-7 |
[46] |
ZHONG Q J, LI J P, ZHANG L F, et al. Predictability of tropical cyclone intensity over the Western North Pacific using the IBTrACS dataset [J]. Monthly Weather Review, 2018, 146(9): 2741–2755, https://doi.org/10.1175/MWR-D-17-0301.1 |
[47] |
PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer, Part Ⅰ: Model description and testing [J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1383–1395, https://doi.org/10.1175/JAM2539.1 |