[1] WILLOUGHBY H E, CLOS J A, SHOREIBAH M G. Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex [J]. Journal of the Atmospheric Sciences, 1982, 39(2): 395–411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2 doi: 10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2
[2] HOUZE R A, CHEN S S, SMULL B F, et al. Hurricane intensity and eyewall replacement [J]. Science, 2007, 315(5816): 1235–1239, https://doi.org/10.1126/science.1135650
[3] WANG Yu-qing, WU Chun-chieh. Current understanding of tropical cyclone structure and intensity changes–a review [J]. Meteorology and Atmospheric Physics, 2004, 87: 257–278, https://doi.org/10.1007/s00703-003-0055-6
[4] ZHOU Xia-qiong, WANG Bin, GE Xu-yang, et al. Impact of secondary eyewall heating on tropical cyclone intensity change [J]. Journal of the Atmospheric Sciences, 2011, 68(3): 450–456, https://doi.org/10.1175/2010JAS3624.1
[5] WANG Yu-qing. Recent research progress on tropical cyclone structure and intensity [J]. Tropical Cyclone Research and Review, 2012, 1(2): 254–275, https://doi.org/10.6057/2012TCRR02.05
[6] SITKOWSKI M, KOSSIN J P, ROZOFF C M. Intensity and structure changes during hurricane eyewall replacement cycles [J]. Monthly Weather Review, 2011, 139(12): 3829–3847, https://doi.org/10.1175/MWR-D-11-00034.1
[7] KUO Hung-chi, CHANG Chih-pei, YANG Yi-ting, et al. Western North Pacific typhoons with concentric eyewalls [J]. Monthly Weather Review, 2009, 137(11): 3758–3770, https://doi.org/10.1175/2009MWR2850.1
[8] ZHU Tong, ZHANG Da-lin, WENG Fu-zhong. Numerical simulation of Hurricane Bonnie (1998), Part Ⅰ: Eyewall evolution and intensity changes [J]. Monthly Weather Review, 2004, 132(1): 225–241, https://doi.org/10.1175/1520-0493(2004)132<0225:NSOHBP>2.0.CO;2 doi: 10.1175/1520-0493(2004)132<0225:NSOHBP>2.0.CO;2
[9] ZHU Zhen-duo, ZHU Ping. The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 8049– 8072, https://doi.org/10.1002/2014JD021899
[10] TSUJINO S, TSUBOKI K, KUO H C. Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven (2012) [J]. Journal of the Atmospheric Sciences, 2017, 74(11): 3609– 3634, https://doi.org/10.1175/JAS-D-16-0236.1
[11] BELL M M, MONTGOMERY M T, LEE W C. An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005) [J]. Journal of the Atmospheric Sciences, 2012, 69(8): 2414–2432, https://doi.org/10.1175/JAS-D-11-0167.1
[12] ZHOU Xiao-qiong, WANG Bin. Mechanism of concentric eyewall replacement cycles and associated intensity change [J]. Journal of the Atmospheric Sciences, 2011, 68(5): 972–988, https://doi.org/10.1175/2011JAS3575.1
[13] LAI T K, MENELAOU K, YAU M K. Barotropic instability across the moat and inner eyewall dissipation: a numerical study of Hurricane Wilma (2005) [J]. Journal of the Atmospheric Sciences, 2019, 76(4): 989–1013, https://doi.org/10.1175/JAS-D-18-0191.1
[14] ZHU Zhen-duo, ZHU Ping. Sensitivities of eyewall replacement cycle to model physics, vortex structure, and background winds in numerical simulations of tropical cyclones [J]. Journal of Geophysical Research: Atmospheres, 2015, 120(2): 590–622, https://doi.org/10.1002/2014JD022056
[15] GUAN Liang, GE Xu-yang. How does tropical cyclone size affect the onset timing of second eyewall formation? [J]. Journal of Meteorological Research, 2018, 32: 124–138, https://doi.org/10.1007/s13351-018-7023-z
[16] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A Description of the Advanced Research WRF Version 3(No. NCAR/TN-475+STR) [M]. Boulder: University Corporation for Atmospheric Research, 2008: 1–113, http://dx.doi.org/10.5065/D68S4MVH
[17] THOMPSON G, RASMUSSEN R M, MANNING K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme, Part Ⅰ: description and sensitivity analysis [J]. Monthly Weather Review, 2004, 132(2): 519–542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2 doi: 10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2
[18] THOMPSON G, FIELD P R, RASMUSSEN R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme, Part Ⅱ: implementation of a new snow parameterization [J]. Monthly Weather Review, 2008, 136(12): 5095–5115, https://doi.org/10.1175/2008MWR2387.1
[19] MONIN A S, OBUKHOV A M. Basic laws of turbulent mixing in the atmosphere near the ground [J]. Trudy Instituta geologicheskikh nauk Akademii nauk SSSR, 1954, 24: 1963–1987.
[20] JANJIC Z. The surface layer in the NCEP Eta Model [C]// Eleventh Conference on Numerical Weather Prediction. Norfolk: American Meteorological Society, 2006.
[21] JANJIC Z. The Step-Mountain Eta Coordinate Model: further developments of the convection, viscous sublayer, and turbulence closure schemes [J]. Monthly Weather Review, 1994, 122(5): 927–945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2 doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[22] TIEDTKE M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models [J]. Monthly Weather Review, 1989, 117(8): 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
[23] ZHANG C X, WANG Y Q, HAMILTON K. Improved representation of boundary layer clouds over the Southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme [J]. Monthly Weather Review, 2011, 139(11): 3489–3513, https://doi.org/10.1175/MWRD-10-05091.1
[24] DUNION J P. Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere [J]. Journal of Climate, 2011, 24: 893–908, https://doi.org/10.1175/2010JCLI3496.1
[25] WANG Bin, LI Xiao-fan. The beta drift of three-dimensional vortices: A numerical study [J]. Monthly Weather Review, 1992, 120(4): 579–593, https://doi.org/10.1175/1520-0493(1992)120<0579:TBDOTD>2.0.CO;2 doi: 10.1175/1520-0493(1992)120<0579:TBDOTD>2.0.CO;2
[26] QIU Xin, TAN Zhe-min. The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation [J]. Journal of the Atmospheric Sciences, 2013, 70(3): 953–974, https://doi.org/10.1175/JAS-D-12-084.1
[27] WANG Hui, WU Chun-chieh, WANG Yu-qing. Secondary eyewall formation in an idealized tropical cyclone simulation: balanced and unbalanced dynamics [J]. Journal of the Atmospheric Sciences, 2016, 73(10): 3911–3930, https://doi.org/10.1175/JAS-D-15-0146.1
[28] WANG Hui, WANG Yu-qing, XU Jing, et al. The axisymmetric and asymmetric aspects of the secondary eyewall formation in a numerically simulated tropical cyclone under idealized conditions on an f plane [J]. Journal of the Atmospheric Sciences, 2019, 76(1): 357– 378, https://doi.org/10.1175/JAS-D-18-0130.1
[29] XU Jing, WANG Yu-qing. Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size [J]. Monthly Weather Review, 2010, 138(11): 4135–4157, https://doi.org/10.1175/2010MWR3335.1
[30] KNAFF J A, KOSSIN J P, DEMARIA M. Annular hurricanes [J]. Weather and Forecasting, 2003, 18(2): 204–223, https://doi.org/10.1175/1520-0434(2003)018<0204:ah>2.0.co;2 doi: 10.1175/1520-0434(2003)018<0204:ah>2.0.co;2
[31] WANG Yu-qing. Rapid filamentation zone in a numerically simulated tropical cyclone [J]. Journal of the Atmospheric Sciences, 2008, 65(4): 1158–1181, https://doi.org/10.1175/2007JAS2426.1
[32] XU Jing, WANG Yu-qing. Effect of the initial vortex structure on intensification of a numerically simulated tropical cyclone [J]. Journal of the Meteorological Society of Japan, 2018, 96(2): 111–126, https://doi.org/10.2151/jmsj.2018-014
[33] LI Tsung-han, WANG Yu-qing. The role of boundary layer dynamics in tropical cyclone intensification, Part Ⅱ: sensitivity to initial vortex structure [J]. Journal of the Meteorological Society of Japan, 2021, 99(2): 555–573, https://doi.org/10.2151/jmsj.2021-028
[34] XU Jing, WANG Yu-qing. Sensitivity of tropical cyclone inner core size and intensity to the radial distribution of surface entropy flux [J]. Journal of the Atmospheric Sciences, 2010, 67(6): 1831–1852, https://doi.org/10.1175/2010JAS3387.1
[35] ROZOFF C M, SCHBERT W H, MCNDLDY B D. Rapid filamentation zones in intense tropical cyclones [J]. Journal of the Atmospheric Sciences, 2006, 63(1): 325–340, https://doi.org/10.1175/JAS3595.1
[36] LI Yuan-long, WANG Yu-qing, LIN Yan-luan. How much does the upward advection of the supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity? [J]. Journal of the Atmospheric Sciences, 2020, 77(8): 2649–2664, https://doi.org/10.1175/JAS-D-19-0350.1
[37] FEI Rong, WANG Yu-qing, LI Yuan-long. Contribution of vertical advection to supergradient wind in tropical cyclone boundary layer: a numerical study [J]. Journal of the Atmospheric Sciences, 2021, 78(4): 1057–1073, https://doi.org/10.1175/JAS-D-20-0075.1
[38] WANG Yu-qing. How do outer spiral rainbands affect tropical cyclone structure and intensity? [J]. Journal of the Atmospheric Sciences, 2009, 66(5): 1250–1273, https://doi.org/10.1175/2008JAS2737.1