[1] TAYLOR R J. Thermal structures in the lowest layers of the atmosphere[J]. Aust J Phys, 1958, 11(2): 168-176, https://doi.org/10.1071/PH580168.
[2] KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. J Fluid Mech, 1967, 30(4): 741-773, https://doi.org/10.1017/S0022112067001740.
[3] HUSSAIN A K M F. Coherent structures and turbulence [J]. J Fluid Mech, 1986, 173: 303-356, https://doi.org/10.1017/S0022112086001192.
[4] BLACKWELDER R F, KAPLAN R E. On the wall structure of the turbulent boundary layer[J]. J Fluid Mech, 1976, 76(1): 89-112, https://doi.org/10.1017/S0022112076003145.
[5] KATUL G, KUHN G, SCHIELDGE J, et al. The ejection-sweep character of scalar fluxes in the unstable surface layer[J]. Boundary-Layer Meteorol, 1997, 83(1): 1-26, https://doi.org/10.1023/A:1000293516830.
[6] CHEN W, NOVAK M D, BLACK T A, et al. Coherent eddies and temperature structure functions for three contrasting surfaces, Part I: Ramp model with finite microfront time[J]. Boundary-Layer Meteorol, 1997, 84: 99-124, https://doi.org/10.1023/A:1000338817250.
[7] CHEN J, HU F. Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe river basin, China[J]. Boundary-Layer Meteorol, 2003, 107(2): 429-444, https://doi.org/10.1023/A:1022162030155.
[8] BARTHLOTT C, DROBINSKI P, FESQUET C, et al. Long-term study of coherent structures in the atmospheric surface layer[J]. Boundary-Layer Meteorol, 2007, 125(1): 1-24, https://doi.org/10.1007/s10546-007-9190-9.
[9] CHEN H, CHEN J, HU F, et al. The coherent structure of water vapour transfer in the unstable atmospheric surface layer[J]. Boundary-Layer Meteorol, 2004, 111(3): 543-552, https://doi.org/10.1023/B: BOUN.0000016541.21104.8b. doi: 10.1023/B:BOUN.0000016541.21104.8b
[10] RUMMEL U, AMMANN C, MEIXNER F X. Characterizing turbulent trace gas exchange above a dense tropical rain forest using wavelet and surface renewal analysis[C]//15th Symposium on Boundary Layers and Turbulence. Boston: American Meteorological Society, 2002.
[11] DROBINSKI P, REDELSPERGER J L, PIETRAS C. Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy[J]. Geophys Res Lett, 2006, 33(23): L23806, https://doi.org/10.1029/2006GL027062.
[12] WANG Yin-jun, XU Xiang-de, ZHAO Yang, et al. Variation characteristics of the planetary boundary layer height and its relationship with PM2.5 concentration over China[J]. J Trop Meteor, 2018, 24(3): 385-394, https://doi.org/10.16555/j.1006-8775.2018.03.011.
[13] RAUPACH M R, THOM A S, EDWARDS I. A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces[J]. Boundary-Layer Meteorol, 1980, 18 (4): 373-397, https://doi.org/10.1007/BF00119495.
[14] RAUPACH M R, FINNIGAN J J, BRUNEI Y. Coherent eddies and turbulence in vegetation canopies: the mixing- layer analogy[J]. Boundary-Layer Meteorol, 1996, 78(3-4): 351-382, https://doi.org/10.1007/BF00120941.
[15] AKSAMIT N O, POMEROY J W. The effect of coherent structures in the atmospheric surface layer on blowing-snow transport[J]. Boundary-Layer Meteorol, 2018, 167: 211-233- https://doi.org/10.1007/s10546-017-0318-2.
[16] WILLIAMS A G, HACKER J M. The composite shape and structure of coherent eddies in the convective boundary layer[J]. Boundary-Layer Meteorol, 1992, 61: 213-245, https://doi.org/10.1007/BF02042933.
[17] DROBINSKI P, CARLOTTI P, NEWSOM R K, et al. The structure of the near-neutral atmospheric surface layer[J]. J Atmos Sci, 2004, 61(6): 699-714, https://doi.org/10.1175/1520-0469(2004)061 < 0699:TSOTNA > 2.0.CO; 2. doi: 10.1175/1520-0469(2004)061<0699:TSOTNA>2.0.CO;2
[18] KRUSCHE N, De OLIVEIRA A P. Characterization of coherent structures in the atmospheric surface layer[J]. Boundary-Layer Meteorol, 2004, 110(2): 191-211, https://doi.org/10.1023/A:1026096805679.
[19] SUN J, LENSCHOW D H, LEMONE M A, et al. The role of large-coherent-eddy transport in the atmospheric surface layer based on CASES-99 observations[J]. Boundary-Layer Meteorol, 2016, 160: 83-111, https://doi.org/10.1007/s10546-016-0134-0.
[20] FANG M, ALBRECHT B A, GHATE V P, et al. Turbulence in continental stratocumulus, Part Ⅱ: Eddy dissipation rates and large-eddy coherent structures[J]. Boundary-Layer Meteorol, 2014, 150: 361-380, https://doi.org/10.1007/s10546-013-9872-4.
[21] FOSTER R C, VIANEY F, DROBINSKI P, et al. Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally-stratified boundary layer[J]. Boundary-Layer Meteorol, 2006, 120 (2): 229-255, https://doi.org/10.1007/s10546-006-9054-8.
[22] DROBINSKI P, CARLOTTI P, REDELSPERGER J L, et al. Numerical and experimental investigation of the neutral atmospheric surface layer[J]. J Atmos Sci, 2007, 64(1): 137-156, https://doi.org/10.1175/JAS3831.1.
[23] STAWIARSKI C, TRÄUMNER K, KOTTMEIER C, et al. Assessment of surface-layer coherent structure detection in dual-doppler lidar data based on virtual measurements [J]. Boundary-Layer Meteorol, 2015, 156: 371-393, https://doi.org/10.1007/s10546-015-0039-3.
[24] FARGE M. Wavelet transforms and their applications to turbulence[J]. Annu Rev Fluid Mech, 1992, 24: 395-458, https://doi.org/10.1146/annurev.fl.24.010192.002143.
[25] EDER F, SERAFIMOVICH A, FOKEN T. Coherent structures at a forest edge: properties, coupling and impact of secondary circulations[J]. Boundary-Layer Meteorol, 2013, 148(2): 285-308, https://doi.org/10.1007/s10546-013-9815-0.
[26] CONAN B, AUBRUN S, COUDOUR B, et al. Contribution of coherent structures to momentum and concentration fluxes over a flat vegetation canopy modelled in a wind tunnel[J]. Atmos Environ, 2015, 107: 329-341, https://doi.org/10.1016/j.atmosenv.2015.02.061.
[27] AI Wei-hua, GE Shu-rui, WEI Hao, et al. Planetary boundary layer height measured by a wind profiler based on the wavelet transform[J]. J Trop Meteor, 2017, 23(4): 396-407, https://doi.org/10.16555/j. 1006-8775.2017.04.005. doi: 10.16555/j.1006-8775.2017.04.005
[28] MOHR M, SCHINDLER D. Coherent Momentum exchange above and within a scots pine forest [J]. Atmos, 2016, 7(4): 61, https://doi.org/10.3390/atmos7040061.
[29] FESQUET C, DROBINSKI P, BARTHLOTT C, et al. Impact of terrain heterogeneity on near-surface turbulence structure[J]. Atmos Res, 2009, 94(2): 254-269, https://doi.org/10.1016/j.atmosres.2009.06.003.
[30] LOTFY E R, ABBAS A A, ZAKI S A, et al. Characteristics of turbulent coherent structures in atmospheric flow under different shear-buoyancy conditions[J]. Boundary-Layer Meteorol, 2019, 173: 115-141, https://doi.org/10.1007/s10546-019-00459-y.
[31] STARKENBURG D, FOCHESATTO G J, PRAKASH A, et al. The role of coherent flow structures in the sensible heat fluxes of an Alaskan boreal forest[J]. J Geophys Res Atmos, 2013, 118(15): 8140-8155, https://doi.org/10.1002/jgrd.50625.
[32] COLLINEAU S, BRUNET Y. Detection of turbulent coherent motions in a forest canopy, Part I: wavelet analysis[J]. Boundary-Layer Meteorol, 1993, 65: 357-379, https://doi.org/10.1007/BF00707033.
[33] FEIGENWINTER C, VOGT R. Detection and analysis of coherent structures in urban turbulence [J]. Theor Appl Climatol, 2005, 81(3-4): 219-230, https://doi.org/10.1007/s00704-004-0111-2.
[34] WANG Jie-min, WANG Wei-zhen, AO Yin-huan, et al. Turbulence flux measurements under complicated conditions[J]. Adv Earth Sci, 2007, 22(8): 791-797(in Chinese), https://doi.org/10.3321/j. issn: 1001-8166.2007.08.004. doi: 10.3321/j.issn:1001-8166.2007.08.004
[35] FOKEN T, GÖOCKEDE M, MAUDER M, et al. Post-field data quality control.[M]//LEE X, MASSMAN W, LAW B (eds), Handbook of Micrometeorology Dordrecht: Springer, Atmospheric and Oceanographic Sciences Library, vol 29, https://doi.org/10.1007/1-4020-2265-4_9.
[36] GAO W, LI B L. Wavelet analysis of coherent structures at the atmosphere-forest interface[J]. J Appl Meteorol, 1993, 32(11): 1717-1725, https://doi.org/10.1175/1520-0450(1993)032 < 1717:WAOCSA > 2.0.CO; 2. doi: 10.1175/1520-0450(1993)032<1717:WAOCSA>2.0.CO;2
[37] THOMAS C, FOKEN T. Detection of long-term coherent exchange over spruce forest using wavelet analysis[J]. Theor Appl Climatol, 2005, 80(2-4): 91-104, https://doi.org/10.1007/s00704-004-0093-0.
[38] ZHANG Y, LIU H, FOKEN T, et al. Coherent structures and flux contribution over an inhomogeneously irrigated cotton field[J]. Theor Appl Climatol, 2011, 103(1-2): 119-131, https://doi.org/10.1007/s00704-010-0287-6.
[39] THOMAS C, FOKEN T. Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects[J]. Boundary-Layer Meteorol, 2007, 122 (1): 123-147, https://doi.org/10.1007/s10546-006-9087-z.
[40] DIAS JUNIOR C Q, SÁ L D A, PACHECO V B, et al. Coherent structures detected in the unstable atmospheric surface layer above the Amazon forest[J]. J Wind Eng Ind Aerodyn, 2013, 115: 1-8, https://doi.org/10.1016/j. jweia.2012.12.019. doi: 10.1016/j.jweia.2012.12.019