[1] SCHUMACHER R S, JOHNSON R H. Organization and environmental properties of extreme-rain-producing mesoscale convective systems[J]. Monthly Weather Review, 2005, 133(4): 961–976, https://doi.org/10.1175/MWR2899.1
[2] TRAPP R J, TESSENDORF S A, GODFREY E S, et al. Tornadoes from squall lines and bow echoes, Part Ⅰ: climatological distribution[J]. Weather and Forecasting, 2005, 20(1): 23–34, https://doi.org/10.1175/WAF-835.1
[3] LOMBARDO K A, COLLE B A. Convective storm structures and ambient conditions associated with severe weather over the northeast United States[J]. Weather and Forecasting, 2011, 26(6): 940–956, https://doi.org/10.1175/WAF-D-11-00002.1
[4] MA Ruo-yun, SUN Jian-hua, YANG Xin-lin. A 7-yr climatology of the initiation, decay, and morphology of severe convective storms during the warm season over North China[J]. Monthly Weather Review, 2021, 149(8): 2599–2612, https://doi.org/10.1175/MWR-D-20-0087.1
[5] MAURI E L, GALLUS JR W A. Differences between severe and nonsevere warm-season, nocturnal bow echo environments[J]. Weather and Forecasting, 2021, 36(1): 53–74, https://doi.org/10.1175/WAF-D-20-0137.1
[6] WAN Fu-jing, SUN Ji-song, SUN Min. Impacts of sea breeze front over Shandong Peninsula on the evolution of a squall line[J]. Acta Meteorologica Sinica, 2021, 79(5): 717–731, in Chinese with English abstract, https://doi.org/10.11676/qxxb2021.056
[7] PAN Yun-tai, YANG Ming-jen. Asymmetric structures of a squall-line MCS over Taiwan with significant hydraulic jumps[J]. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58: 415–433, https://doi.org/10.1007/s13143-021-00262–1
[8] FANG Zong-yi. The preliminary study of medium-scale cloud cluster over Changjiang basin in summer[J]. Advances in Atmospheric Sciences, 1985, 2: 334–340, https://doi.org/10.1007/BF02677249
[9] NINOMIYA K, AKIYAMA T, IKAWA M. Evolution and fine structure of a long-lived meso-α-scale convective system in a Baiu front zone, Part Ⅰ: evolution and meso-β-scale characteristics[J]. Journal of the Meteorological Society of Japan Series Ⅱ, 1988, 66(2): 331–350, https://doi.org/10.2151/jmsj1965.66.2_331
[10] FOVELL R G, TAN P. The temporal behavior of numerically simulated multicell-type storms, Part Ⅱ: the convective cell life cycle and cell regeneration[J]. Monthly Weather Review, 1998, 126(3): 551–577, https://doi.org/10.1175/1520-0493(1998)126<0551:TTBONS>2.0.CO;2 doi: 10.1175/1520-0493(1998)126<0551:TTBONS>2.0.CO;2
[11] GAMACHE J F, HOUZE R A. Mesoscale air motions associated with a tropical squall line[J]. Monthly Weather Review, 1982, 110(2): 118–135, https://doi.org/10.1175/1520-0493(1982)110<0118:MAMAWA>2.0.CO;2 doi: 10.1175/1520-0493(1982)110<0118:MAMAWA>2.0.CO;2
[12] SMULL B F, HOUZE R A. A midlatitude squall line with a trailing region of stratiform rain: radar and satellite observations[J]. Monthly Weather Review, 1985, 113(1): 117–133, https://doi.org/10.1175/1520-0493(1985)113<0117:AMSLWA>2.0.CO;2 doi: 10.1175/1520-0493(1985)113<0117:AMSLWA>2.0.CO;2
[13] TENG Jen-hsin, CHEN Ching-sen, CHEN WANG Tai-chi, et al. Orographic effects on a squall line system over Taiwan[J]. Monthly Weather Review, 2000, 128, 1123–1138, https://doi.org/10.1175/1520-0493(2000)128<1123:OEOASL>2.0.CO;2 doi: 10.1175/1520-0493(2000)128<1123:OEOASL>2.0.CO;2
[14] LETKEWICZ C E, PARKER M D. Impact of environmental variations on simulated squall lines interacting with terrain[J]. Monthly Weather Review, 2011, 139(10): 3163–3183, https://doi.org/10.1175/2011MWR3635.1
[15] ZHU Jia-shan, WEI Ming, GAO Si-nan, et al. The scattering mechanism of squall lines with C-Band dual polarization radar, Part Ⅰ: echo characteristics and particles phase recognition[J]. Frontiers of Earth Science, 2022, 16: 221–235, https://doi.org/10.1007/s11707-020-0863-8
[16] ABULIKEMU A, XU X, WANG Y, et al. A modeling study of convection initiation prior to the merger of a sea-breeze front and a gust front[J]. Atmospheric Research, 2016, 182: 10–19, https://doi.org/10.1016/j.atmosres.2016.07.003
[17] BAKER R D, LYNN B H, BOONE A, et al. The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation[J]. Journal of Hydrometeorology, 2001, 2(2): 193–211, https://doi.org/10.1175/1525-7541(2001)002<0193:TIOSMC>2.0.CO;2 doi: 10.1175/1525-7541(2001)002<0193:TIOSMC>2.0.CO;2
[18] CROSMAN E T, HOREL J D. Sea and lake breezes: A review of numerical studies[J]. Boundary-Layer Meteorology, 2010, 137: 1–29, https://doi.org/10.1007/s10546-010-9517-9
[19] SEGAL M M, LEUTHOLD W, ARRITT R, et al. Small lake daytime breezes: some observational and conceptual evaluations[J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1135–148, https://doi.org/10.1175/1520-0477(1997)078<1135:SLDBSO>2.0.CO;2 doi: 10.1175/1520-0477(1997)078<1135:SLDBSO>2.0.CO;2
[20] MILLER S, KEIM B, TALBOT R, et al. Sea breeze: structure, forecasting, and impacts[J]. Reviews of Geophysics, 2003, 41(3): 1–31, https://doi.org/10.1029/2003RG000124
[21] KINGSMILL D E. Convection initiation associated with a sea-breeze front, a gust front, and their collision[J]. Monthly Weather Review, 1995, 123(10): 2913–2933, https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2 doi: 10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2
[22] HOCK N, ZHANG F, PU Z. Numerical simulations of a Florida sea breeze and its interactions with associated convection: effects of geophysical representation and model resolution[J]. Advances in Atmospheric Sciences, 2022, 39: 697–713, https://doi.org/10.1007/s00376-021-1216-6
[23] CLARK P A, BROWNING K A, FORBES R M, et al. The evolution of an MCS over southern England, Part 2: model simulations and sensitivity to microphysics[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140: 458–479, https://doi.org/10.1002/qj.2142
[24] YOSHIDA R, NISHIZAWA S, YASHIRO H, et al. Maintenance condition of back-building squall-line in a numerical simulation of a heavy rainfall event in July 2010 in Western Japan[J]. Atmospheric Science Letters, 2019, 20(1): e880, https://doi.org/10.1002/asl.880
[25] PAN Yu-jie, WANG Ming-jun. Impact of the assimilation frequency of radar data with the ARPS 3DVar and cloud analysis system on forecasts of a squall line in Southern China[J]. Advances in Atmospheric Sciences, 2019, 36: 160–172, https://doi.org/10.1007/s00376-018-8087-5
[26] TRAPP R J, WEISMAN M L. Low-level mesovortices within squall lines and bow echoes, Part Ⅱ: their genesis and implications[J]. Monthly Weather Review, 2003, 131 (11): 2804–2823, https://doi.org/10.1175/1520-0493(2003)131<2804:lmwsla>2.0.co;2. doi: 10.1175/1520-0493(2003)131<2804:lmwsla>2.0.co;2
[27] GAO J D, FU C H, STENSRUD D J, et al. OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms[J]. Journal of the Atmospheric Sciences, 2016, 73(6): 2403–2426, https://doi.org/10.1175/jas-d-15-0311.1
[28] TIAN Fu-you, ZHANG Xiao-ling, SUN Jian-hua, et al. Climatology and pre-convection environmental conditions of dry and wet thunderstorm high winds over eastern China[J]. Theoretical and Applied Climatology, 2024, 155, 1493–1506, https://doi.org/10.1007/s00704-023-04704-w
[29] AZORIN-MOLINA C S, TIJM S, EBERT E E, et al. Sea breeze thunderstorms in the eastern Iberian Peninsula, neighborhood verification of HIRLAM and HARMONIE precipitation forecasts[J]. Atmospheric Research, 2014, 139: 101–115, https://doi.org/10.1016/j.atmosres.2014.01.010
[30] WANG C C, ROGERS J C. A composite study of explosive cyclogenesis in different sectors of the North Atlantic, Part Ⅰ: cyclone structure and evolution[J]. Monthly Weather Review, 2001, 129(6): 1481–1499, https://doi.org/10.1175/1520-0493(2001)129<1481:ACSOEC>2.0.CO;2 doi: 10.1175/1520-0493(2001)129<1481:ACSOEC>2.0.CO;2
[31] ARRITT R W. Effects of the large-scale flow on characteristic features of the sea breeze[J]. Journal of Applied Meteorology and Climatology, 1993, 32(1): 116–125, https://doi.org/10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2 doi: 10.1175/1520-0450(1993)032<0116:EOTLSF>2.0.CO;2
[32] DAILEY P S, FOVELL R G. Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls, Part Ⅰ: offshore ambient flow[J]. Monthly Weather Review, 1999, 127(5): 858–878, https://doi.org/10.1175/1520-0493(1999)127<0858:NSOTIB>2.0.CO;2 doi: 10.1175/1520-0493(1999)127<0858:NSOTIB>2.0.CO;2
[33] FOVELL R G. Convective initiation ahead of the seabreeze front[J]. Monthly Weather Review, 2005, 133(1): 264–278, https://doi.org/10.1175/MWR-2852.1
[34] WISSMEIER U, SMITH R K, GOLER R. The formation of a multicell thunderstorm behind a sea-breeze front[J]. Quarterly Journal of the Royal Meteorological Society, 2001, 136(653): 2176–2188, https://doi.org/10.1002/qj.691
[35] LOMBARDO K, KADING T. The behavior of squall lines in horizontally heterogeneous coastal environments[J]. Journal of the Atmospheric Sciences, 2018, 75(4): 1243–1269, https://doi.org/10.1175/JAS-D-17-0248.1
[36] WALSH J E. Sea breeze theory and applications[J]. Journal of the Atmospheric Sciences, 1974, 31(8): 2012–2026, https://doi.org/10.1175/1520-0469(1974)031<2012:SBTAA>2.0.CO;2 doi: 10.1175/1520-0469(1974)031<2012:SBTAA>2.0.CO;2
[37] ALFARO D A. Low-tropospheric shear in the structure of squall lines: impacts on latent heating under layer-lifting ascent[J]. Journal of Atmospheric Sciences, 2017, 74(1): 229–248, https://doi.org/10.1175/JAS-D-16-0168.1
[38] LOVELL L T, PARKER M D. Simulated QLCS vortices in a high-shear, low-CAPE environment[J]. Weather and Forecasting, 2022, 37(6): 989–1012, https://doi.org/10.1175/WAF-D-21-0133.1
[39] CHEN Xiao-hao, ZHANG Fu-qing, ZHAO Kun. Diurnal variations of the land–sea breeze and its related precipitation over South China[J]. Journal of the Atmospheric Sciences, 2016, 73(12): 4793–4815, https://doi.org/10.1175/JAS-D-16-0106.1
[40] PARKER M D. Self-organization and maintenance of simulated nocturnal convective systems from PECAN[J]. Monthly Weather Review, 2021, 149(4): 999–1022, https://doi.org/10.1175/MWR-D-20-0263.1
[41] ZHOU Ang, ZHAO Kun, LEE Wen-chau, et al. Evaluation and modification of microphysics schemes on the cold pool evolution for a simulated bow echo in Southeast China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127 (2): e2021JD035262, https://doi.org/10.1029/2021JD035262
[42] ALFARO D A, KHAIROUTDINOV M. Thermodynamic constraints on the morphology of simulated midlatitude squall lines[J]. Journal of Atmospheric Sciences, 2015, 72 (8): 3116–3137, https://doi.org/10.1175/JAS-D-14-0295.1
[43] WEISMAN M L, KLEMP J B, ROTUNNO R. Structure and evolution of numerically simulated squall lines[J]. Journal of Atmospheric Sciences, 1988, 45(14): 1990–2013, https://doi.org/10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2 doi: 10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2
[44] WEISMAN M L, ROTUNNO R. A theory for strong longlived squall lines revisited[J]. Journal of Atmospheric Sciences, 2004, 61(4): 361–382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2 doi: 10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2
[45] PETERS K, HOHENEGGER C. On the dependence of squall-line characteristics on surface conditions[J]. Journal of Atmospheric Sciences, 2017, 74: 2211–2228, https://doi.org/10.1175/JAS-D-16-0290.1