[1] |
BERRISFORD P, DEE D, POLI P, et al. The ERA-Interim Archive Verison 2.0[M]. Shinfield Park, Reading: ECMWF, 2011: 1-27, https://www.ecmwf.int/node/8174. |
[2] |
TIAN Y R, LI G P, LIU Y F. Comparison of the atmospheric heat source over the Tibetan Plateau computed by three reanalysis data sets[J]. Desert and Oasis Meteorology, 2017, 11(04): 1-8 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJQX201704002.htm |
[3] |
HE D Y, TIAN H, DENG W T. Applicability analysis of three reanalysis surface temperature data over the Tibetan Plateau[J]. Trans Atmos Sci, 2013, 36(04): 458-465 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-NJQX201304008.htm |
[4] |
HU M L, YOU Q L, LIN H B. Comparative analyses of geopotential height and wind field from multiple reanalysis data over the Tibetan Plateau[J]. J Glaciology and Geocryology, 2015, 37(05): 1229-1244 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BCDT201505011.htm |
[5] |
LIU C, LIU Y M, LIU B Q. Comparison of six sensible heat flux datasets over the Iranian-Tibetan Plateaus[J]. J Atmos Sci, 2015, 35(04): 398-404 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-meteorological-sciences_thesis/0201254097218.html |
[6] |
WANG M Y, YAO S, JIANG L P, et al. Collection and pre-processing of satellite remote sensing data in CRA-40 (CMA's global atmospheric reanalysis)[J]. Adv Meteor Sci Technol, 2018, 8(1): 158-163 (in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-qxkz201801038.htm |
[7] |
FLOHN H. Large-scale aspects of the"summer monsoon" in South and East Asia[J]. J Meteor Soc Japan, 1957, 75: 180-186, https://doi.org/10.2151/jmsj1923.35A.0_180. |
[8] |
YIN M T. Synoptic-aerologic study of the onset of the summer monsoon over India and Burma[J]. J Atmos Sci, 1949, 6(6): 393-400, https://doi.org/10.1175/1520-0469 (1949)006 < 0393: sasoto > 2.0.co; 2. doi: 10.1175/1520-0469(1949)006<0393:sasoto>2.0.co;2 |
[9] |
TANAKA K, ISHIKAWA H, HAYASHI T, et al. Surface energy budget at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data[J]. J Meteor Soc Japan, 2001, 79 (1B): 505-517, https://doi.org/10.2151/jmsj.79.505. |
[10] |
UEDA H, KAMAHORI H, YAMAZAKI N. Seasonal contrasting features of heat and moisture budgets between the eastern and western Tibetan Plateau during the GAME IOP [J]. J Climate, 2003, 16(14): 2309-2324, https://doi.org/10.1175/2757.1. |
[11] |
YAO Xiu-ping, ZHANG Xia, MA Jia-li. Characteristics of the meridionally oriented shear lines over the Tibetan Plateau and its relationship with rainstorms in the boreal summer half-year[J]. J Trop Meteor, 2020, 26(1): 93-102, https://doi.org/10.16555/j.1006-8775.2020.009. |
[12] |
ZHAO Fu-hu, LI Guo-ping, HUANG Chu-hui, et al. Modulation of Madden-Julian Oscillation on Tibetan Plateau vortex[J]. J Trop Meteor, 2016, 22(1): 30-41, https://doi.org/10.16555/j.1006-8775.2016.01.004. |
[13] |
MURAKAMI T. The sudden change of upper westerlies near the Tibetan Plateau at the beginning of summer season[J]. J Meteor Soc Japan, 1958, 36(6): 239-247, https://doi.org/10.2151/jms j1923.36.6_239. doi: 10.2151/jmsj1923.36.6_239 |
[14] |
LUO S W. Formation analysis of shear line over the eastern Plateau in winter[J]. Acta Meteor Sinica, 1963, 33 (3): 305-319 (in Chinese). |
[15] |
XU G C. The climatologically synoptic characteristics of the shear line on the 500mb surface over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 1984, 3(1): 38-43 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYQX198303002.htm |
[16] |
SHEN R, REITER E R, BRESCH J F. Numerical simulation of the development of vortices over the Qinghai-Xizang (Tibet) Plateau[J]. Meteor Atmos Phys, 1986, 35(1-2): 70-95, https://doi.org/10.1007/bf01029526. |
[17] |
GAO Yuan, YAO Xiu-ping. Impact of dynamic and thermal forcing on the intensity evolution of the vortices over the Tibetan Plateau in Boreal Summer[J]. J Trop Meteor, 2020, 26(2): 239-252, https://doi.org/10.46267/j.1006-8775.2020.022. |
[18] |
ZHANG X, YAO X P, MA J L, et al. Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during Boreal Summer[J]. J Meteor Res, 2016, 30(6): 915-926, https://doi.org/10.1007/s13351-016-6952-7. |
[19] |
YE D Z, LUO S W, ZHU B Z. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteor Sinica, 1957, 28(2): 108-121 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-QXXB195702002.htm |
[20] |
QIAO Q M, TAN H Q. The structure of 500mb shear line and large-scale circulation over Qingzang Plateau in summer[J]. Plateau Meteor, 1984, 3(3): 50-57 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYQX198403005.htm |
[21] |
LI G P. The Dynamic Meteorology Study of Tibetan Plateau[M]. Beijing: China Meteorological Press, 2002:1-251 (in Chinese). |
[22] |
LI R, MIN Q L, WU X Q, et al. Retrieving latent heating vertical structure from cloud and precipitation profiles-Part Ⅱ Deep convection and stratiform rain progresses[J]. J Quant Spectrosc Ra, 2013, 122: 47-63, https://doi.org/10.1016/j.jqsrt.2012.11.029. |
[23] |
YU S H, GAO W L, PENG J. Statistical analysis of shearline activity in QXP and its influence on rainfall in China in recent 13 years[J]. Meteor, 2013, 32(6): 1527-1537 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-GYQX201306001.htm |
[24] |
YAO X P, SUN J Y, KANG L, et al. Advances on research of shear convergence line over Qinghai-Xizang Plateau[J]. Plateau Meteor, 2014, 33(1): 294-300 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYQX201401031.htm |
[25] |
The Tibetan Plateau Science Research Group. Study on 500 hPa Low Vortex Shear Line of Tibet Plateau[M]. Beijing: Science Press, 1981: 100-122 (in Chinese). |
[26] |
TAO S Y, LUO S W, ZHANG H C. The meteorological science experiment and observation system of the Qinghai-Tibet Plateau in May-August 1979[J]. Meteor Mon, 1984, 10(7): 2-5 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-QXXX198407000.htm |
[27] |
TAO W K, SMITH E A, ADLER R F, et al. Retrieval of latent heating from TRMM measurements[J]. Bull Amer Meteor Soc, 2006, 87(11): 1555-1572, https://doi.org/10.1175/bams-87-11-1555. |
[28] |
MIN Q L, LI R, WU X Q, et al. Retrieving latent heating vertical structure from cloud and precipitation profiles-Part Ⅰ Warm rain processes[J]. J Quant Spectrosc Ra, 2013, 122: 31-46, https://doi.org/10.1016/j. jqsrt.2012.11.030. doi: 10.1016/j.jqsrt.2012.11.030 |
[29] |
DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597, https://doi.org/10.1002/qj.828. |
[30] |
LIU Z M, LI G P. Objective identification of the Tibetan Plateau shear line and statistical analysis of its spatiotemporal evolution features[J]. Chin J Atmos Sci, 2019, 43(1): 13-26 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXK201901018.htm |
[31] |
GUAN Q, YAO X P, LI Q P, et al. Study of a horizontal shear line over the Qinghai-Tibetan Plateau and the impact of diabatic heating on its evolution [J]. J Meteor Res, 2018, 32(4): 612-626, https://doi.org/10.1007/s13351-018-7186-7. |
[32] |
MA J L, YAO X P. Statistical analysis of the shear lines and torrential rains over the Yangtze-Huaihe river region during June-July in 1981-2013[J]. Acta Meteor Sinica, 2015, 73(5): 883-894 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB201505006.htm |