[1] SAETRA Ø, HERSBACH H, BIDLOT J R, et al. Effects of observation errors on the statistics for ensemble spread and reliability, European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, United Kingdom[J]. Mon Wea Rev, 2004, 132(6):1487-1501, https://doi.org/10.1175/1520-0493(2004)132 < 1487:EOOEOT > 2.0.CO; 2. doi: 10.1175/1520-0493(2004)132<1487:EOOEOT>2.0.CO;2
[2] TAILLARDAT M, MESTRE O, ZAMO M, et al. Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics[J]. Mon Wea Rev, 2016, 144(6): 2375-2393, https://doi.org/10.1175/MWR-D-15-0260.1.
[3] GUO Rong, QI Liang-bo, GE Qian-qian, et al. A study on the ensemble forecast real-time correction method[J]. J Trop Meteor, 2018, 24(1): 42-48, https://doi.org/10.16555/j.1006-8775.2018.01.004.
[4] WANG Chen-xi. Ensemble prediction experiments of typhoon track based on the stochastic total tendency perturbation[J]. J Trop Meteor, 2016, 22(3): 305-317, https://doi.org/10.16555/j.1006-8775.2016.03.005.
[5] RICHARDSO D S. Skill and relative economic value of the ECMWF Ensemble Prediction System [J]. Q J Roy Meteor Soc, 2000, 126(563): 649-667, https://doi.org/10.1002/qj.49712656313.
[6] PALMER T N. The economic value of ensemble forecasts ASA tool for risk assessment: From days to decades[J]. Q J Roy Meteor Soc, 2002, 128(581): 747-774, http://doi.org/10.1256/0035900021643593.
[7] HAMILL T M, COLUCCI S J. Evaluation of Eta-RSM ensemble probabilistic precipitation forecasts[J]. Mon Wea Rev, 1998, 126(3): 711-724, https://doi.org/10.1175/1520-0493(1998)126 < 0711:EOEREP > 2.0.CO; 2. doi: 10.1175/1520-0493(1998)126<0711:EOEREP>2.0.CO;2
[8] STENSRUD D J, BAO J W, and WARNER T T. Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(7): 2077-2107, https://doi.org/10.1175/1520-0493(2000)128 < 2077:UICAMP > 2.0.CO; 2. doi: 10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2
[9] VUKICEVIC T, JANKOV I, MCGINLEY J. Diagnosis and optimization of ensemble forecasts[J]. Mon Wea Rev, 2008, 136(3): 1054-1074, https://doi.org/10.1175/2007MWR2153.1.
[10] JANKOV I, SCHULTZ P J, ANDERSON C J, et al. The impact of different physical parameterizations and their interactions on cold season QPF in the American river basin[J]. Hydrometeorol, 2007, 8(5): 1141-1151, https://doi.org/10.1175/JHM630.1.
[11] JANKO I, GALLUS Jr. W A, SEGAL M, et al. Influence of initial conditions on the WRF-ARW model QPF response to physical parameterization changes[J]. Wea Forecasting, 2007, 22(3): 501-519, https://doi.org/10.1175/WAF998.1.
[12] HAMILL T M, WHITAKER J S. Global Ensemble Predictions of 2009's Tropical Storms Initialized with an Ensemble Kalman Filter[J]. Mon Wea Rev, 2011, 139(2): 668-688, https://doi.org/10.1175/2010MWR3456.1.
[13] YAMAGUCHI M, SAKAI R, KYODA M, et al. Typhoon ensemble prediction system developed at the Japan Meteorological Agency[J]. Mon Wea Rev, 2009, 137(8): 2592- 2604, https://doi.org/10.1175/2009MWR2697.1.
[14] QI L, YU H, CHEN P. Selective ensemble-mean technique for tropical storm track forecast by using ensemble prediction systems[J]. Q J Roy Meteor Soc, 2014, 140(680): 805-813, https://doi.org/10.1002/qj.2196.
[15] DONG L, ZHANG F. OBEST: An observation-based ensemble subsetting technique for tropical storm track prediction[J]. Wea Forecasting, 2016, 31(1): 57-70, https://doi.org/10.1175/WAF-D-15-0056.1.
[16] LI J H, WAN Q L, GAO Y D. The effect of sample optimization on the ensemble Kalman filter in forecasting Typhoon Rammasun[J]. J Trop Meteor, 2018, 24(4): 433-447, https://doi.org/10.16555/j.1006-8775.2018.04.003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb-e201804003
[17] HOUTEKAMER P L. Global and local skill forecasts[J]. Mon Wea Rev, 1993, 121(6): 1834-1846, https://doi.org/10.1175/1520-0493(1993)121 < 1834:GALSF > 2.0.CO; 2. doi: 10.1175/1520-0493(1993)121<1834:GALSF>2.0.CO;2
[18] WHITAKER J S, LOUGHE A F. The relationship between ensemble spread and ensemble mean skill[J]. Mon Wea Rev, 1998, 126(12): 3292-3302, https://doi.org/10.1175/1520-0493(1998)126 < 3292:TRBESA > 2.0.CO; 2. doi: 10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2
[19] GRIMIT E P, MASS C F. Measuring the ensemble spread-error relationship with a probabilistic approach: Stochastic ensemble results[J]. Mon Wea Rev, 2007, 135 (1): 203-221, https://doi.org/10.1175/MWR3262.1.
[20] HOPSON T M. Assessing the ensemble spread-error relationship[J]. Mon Wea Rev, 2014, 142(3): 1125-1142, https://doi.org/10.1175/MWR-D-12-00111.1.
[21] LI J, GAO Y, WAN Q. Sample optimization of ensemble forecast to simulate tropical cyclone using the observed track[J]. Atmos-Ocean, 2018, 56(3): 162-177, https://doi.org/10.1080/07055900.2018.1500881.
[22] GRELL G A, DEVENYI D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophys Res Lett, 2002, 29 (14): 381-384, https://doi.org/10.1029/2002GL015311.
[23] HONG S, DUDHIA J, CHEN S. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon Wea Rev, 2004, 132(1): 103-120, https://doi.org/10.1175/1520-0493(2004)132 < 0103:ARATIM > 2.0.CO; 2. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
[24] NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-pro fi le model for the planetary boundary layer based on large eddy simulation data[J]. Bound-Layer Meteor, 2003, 107(2): 401-427, https://doi.org/10.1023/A:1022146015946.
[25] ZHU L, WAN Q, SHEN X, et al. Prediction and predictability of high-Impact western pacific landfalling Tropical Storm Vicente (2012) through convection-permitting ensemble assimilation of Doppler radar velocity[J]. Mon Wea Rev, 2016, 144(1): 21-43, https://doi.org/10.1175/MWR-D-14-00403.1.
[26] MENG Z, ZHANG F. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation, Part Ⅲ: Comparison with 3DVAR in a real-data case study[J]. Mon Wea Rev, 2008, 136(2): 522-540, https://doi.org/10.1175/2007MWR2106.1.
[27] MENG Z, ZHANG F. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation, Part Ⅳ: Performance over a warm-season month of June 2003 [J]. Mon Wea Rev, 2008, 136(10): 3671-3682, https://doi.org/10.1175/MWR3352.1. doi: 10.1175/2008MWR2270.1
[28] BARKER D M, HUANG W, GUO Y R, et al. A three-dimensional variational data assimilation system for MM5: Implementation and initial results[J]. Mon Wea Rev, 2004, 132(4): 897-914, https://doi.org/10.1175/1520-0493(2004)132 < 0897:ATVDAS > 2.0.CO; 2. doi: 10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2
[29] ZHANG F, SNYDER C, SUN J. Tests of an ensemble Kalman fi lter for convective-scale data assimilation: Impact of initial estimate and observations[J]. Mon Wea Rev, 2004, 132(5): 1238-1253, https://doi.org/10.1175/1520-0493(2004)132 < 1238:IOIEAO > 2.0.CO; 2. doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
[30] WHITAKER J S, HAMILL T M. Ensemble data assimilation without perturber observations[J]. Mon Wea Rev, 2002, 130(7): 1913-1924, https://doi.org/10.1175/1520-0493(2002)130 < 1913:EDAWPO > 2.0.CO; 2. doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2