[1] ROBERTS N M. Results from simulations of an organized convective event using the New Dynamics at 12, 4 and 2 km resolution [R]. Tech. Report, 126, Joint Centre for Mesoscale Meteorology, University of Reading, reading, UK. 2001.
[2] NARITA M, OHMORI S. improving precipitation forecasts by the operational nonhydrostatic mesoscale model with the Krain-Fritsch convective parameterization and cloud microphysics [C]// 12th Conf. on Mesoscale Process, Waterville Valley, NH, Amer Meteorol Soc, 2007.
[3] STEPPELER J, DOMS G, SCHATTLER U, et al. Meso-gamma scale forecasts using the nonhydrostatic model LM [J]. Meteorol Atmos Phys, 2003, 82(1-4): 75-96.
[4] WEISMAN M L, SKAMAROCK W C, KLEMP J B. The resolution dependence of explicitly modeled convective systems [J]. Mon Wea Rev, 1997, 125(4): 527-548.
[5] ROMERO R, DOSWELL C A, RIOSALIDO R. Observations and fine-grid simulations of a convective outbreak in northeastern Spain: Importance of diurnal forcing and convective cold pools [J]. Mon Wea Rev, 2001, 129(9): 2 157-2 182.
[6] SPEER M S, LESLIE L M. the prediction of two cases of severe convection: implications for forecast guidance [J]. Meteorol Atmos Phys, 2002, 80 (1-4): 165-175.
[7] DONE J, DAVIS C A, WEISMAN M. The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model [J]. Atmos Sci Lett, 2004, 5(6): 110-117.
[8] JIA Xiao-long, LI Chong-yin, LI Chong-yin, et al. Impacts of cumulus parameterization and resolution on the MJO simulation [J]. J Trop Meteorol, 2009, 15(1): 106-110.
[9] HA Hye-kyeong, WANG Zhen-hui, KIM Jeoung-yun, et al. The impact of cumulus parameterizations and microphysics schemes under different combinations on typhoon track prediction [J]. J Trop Meteorol, 2011, 17(2): 113-119.
[10] ROBERTS N M. The impact of a change to the use of the convection scheme to high resolution forecasts of convective events [R]. Met Office Tech Rep, 2003, 407: 30.
[11] ARAKAWA, A. AND SCHUBERT, W.H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I [J]. J Atmos Sci, 1974, 31(3): 674-701.
[12] GRELL G A. Prognostic evaluation of assumptions used by cumulus parameterizations [J]. Mon Wea Rev, 1993, 121(3): 764-787.
[13] PAN H L, WU W S. Implementing a mass flux convective parameterization package for the NMC medium range forecast model [R]. NMC office Note 409, 1995: 40.
[14] HAN J L, PAN H L. Revision of convection and vertical diffusion schemes in the NCEP global forecast system [J]. Wea Forecast, 2011, 26(4): 520-533.
[15] GREGORY D, ROWNTREE P. A mass-flux convection scheme with representation of cloud ensemble characteristics and stability-dependent Closure [J]. Mon Wea Rev, 1990, 118(7): 1 483-1 506.
[16] FRITSCH J M, CHAPPELL C F. Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization [J]. J Atmos Sci, 1980, 37(8): 1 722-1 733.
[17] GRELL G A, DEVENYI D. A generalized approach to parametering convection combining ensemble and data assimilation technique [J]. Geophys Res Lett, 2002, 29(14): 381-384.
[18] LORD S J, ARAKAWA A. Interaction of a cumulus cloud ensemble with the large-scale environment. Part II [J]. J Atmos Sci, 1980, 37(12): 2 677-2 692.