[1] FU B, LI T, PENG M S, et al. Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001 [J]. Wea. Forecast., 2007, 22(4): 763-780.
[2] HOLLAND G J. Scale interaction in the western Pacific monsoon [J]. Meteor. Atmos. Phys., 1995, 56: 57-79.
[3] LI T, FU B, GE X Y, et al. Satellite data analysis and numerical simulation of tropical cyclone formation [J]. Geophys. Res. Lett., 2003, 30(21): 2122, doi: 10.1029/2003GL018556.
[4] LI T, FU B. Tropical cyclogenesis associated with Rossby wave energy dispersion of a preexisting typhoon. Part I: Satellite data analyses [J]. J. Atmos. Sci., 2006, 63(5): 1377-1389.
[5] GE X Y, LI T, PENG M S. Cyclogenesis simulation of Typhoon Prapiroon (2000) associated with Rossby wave energy dispersion [J]. Mon. Wea. Rev., 2010, 138(1): 42-54.
[6] CHANG C P, MORRIS V F, WALLACE J M. A statistical study of easterly waves in the western Pacific: July-December 1964 [J]. J. Atmos. Sci., 1970, 27(2): 195-201.
[7] TAM C Y, LI T. The origin and dispersion characteristics of the observed summertime synoptic-scale waves over the western Pacific [J]. Mon. Wea. Rev., 2006, 134(6): 1630-1646.
[8] CHANG C P, CHEN J M, HARR P A, et al. Northwestward-propagating wave patterns over the tropical western North Pacific during summer [J]. Mon. Wea. Rev., 1996, 124(10): 2245-2266.
[9] LAU K H, LAU N C. Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances [J]. Mon. Wea. Rev., 1990, 118(9): 1888-1913.
[10] BOSART L F, SANDERS F. The Johnstown flood of July 1977: A long-lived convective system [J]. J. Atmos. Sci., 1981, 38(8): 1616-1642.
[11] ZHANG D L, FRITSCH J M. Numerical simulation of the meso-beta-scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex [J]. J. Atmos. Sci., 1987, 44(18): 2593-2612.
[12] CHEN S S, FRANK W M. A numerical study of the genesis of extratropical convective mesovortices. Part I: Evolution and dynamics [J]. J. Atmos. Sci., 1993, 50(15): 2401-2426.
[13] RITCHIE E A, HOLLAND G J. Scale interactions during the formation of Typhoon Irving [J]. Mon. Wea. Rev., 1997, 125(7): 1377-1396.
[14] SIMPSON J E, RITCHIE E A, HOLLAND G J, et al. Mesoscale interactions in tropical cyclone genesis [J]. Mon. Wea. Rev., 1997, 125(10): 2643-2661.
[15] BISTER M, EMANUEL K A. The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study [J]. Mon. Wea. Rev., 1997, 125(9): 2662-2682.
[16] ROGERS R F, FRITSCH J M. Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices [J]. Mon. Wea. Rev., 2001, 129(4): 605-637.
[17] HOUZE R A, LEE W C, BELL M M. Convective Contribution to the Genesis of Hurricane Ophelia (2005) [J]. Mon. Wea. Rev., 2009, 137(9): 2778-2800.
[18] HENDRICKS E A, MONTGOMERY M T, DAVIS C A. The role of vortical hot towers in the formation of Tropical Cyclone Diana (1984) [J]. J. Atmos. Sci., 2004, 61: 1209-1232.
[19] REASOR P D, MONTGOMERY M T, BOSART L F. Mesoscale observations of the genesis of Hurricane Dolly (1996) [J]. J. Atmos. Sci., 2005, 62(9): 3151-3171.
[20] MONTGOMERY M T, NICHOLLS M E, CRAM T A, et al. A vortical hot tower route to tropical cyclogenesis [J]. J. Atmos. Sci., 2006, 63(5): 355-386.
[21] LIN Y L, RARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model [J]. J. Appl. Meteor., 1983, 22(6): 1065-1092.
[22] NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data [J]. Bound.-Layer Meteor., 2003, 107: 401-427.
[23] HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation [J]. Mon. Wea. Rev., 2004, 132(1): 103-120.
[24] HOLLAND G J. The maximum potential intensity of tropical cyclones [J]. J. Atmos. Sci., 1997, 54(21): 2519-2541.
[25] ZHOU X Q, WANG B. From concentric eyewall to annular hurricane: A numerical study with the cloud-resolved WRF model [J]. Geophys. Res. Lett., 2009, 36, L03802, doi: 10.1029/2008GL036854.
[26] NOLAN D S. What is the trigger for tropical cyclogenesis?[J] Aust. Meteor. Mag., 2007, 56: 241-266.
[27] YUTER S E, HOUZE R A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity [J]. Mon. Wea. Rev., 1995, 123(7): 1941-1963.
[28] SCHECTER D A, DUBIN D H. Vortex motion driven by a background vorticity gradient [J]. Phys. Rev. Lett., 1999, 83: 2191-2194.
[29] HACK J J, SCHUBERT W H. Nonlinear response of atmospheric vortices to heating by organized cumulus convection [J]. J. Atmos. Sci., 1986, 43(15): 1559-1573.
[30] TORY K J, MONTGOMERGY M T, DAVIDSON N E. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part I: The critical role of vortex enhancement in deep convection [J]. J. Atmos. Sci., 2006, 63(12): 3077-3090.
[31] TORY K J, MONTGOMERGY M T, DAVIDSON N E, et al. Prediction and diagnosis of tropical cyclone formation in an NWP system. Part II: A diagnosis of tropical cyclone Chris formation [J]. J. Atmos. Sci., 2006, 63(12): 3091-3113.
[32] KUO H C, LIN L Y, CHANG C P, et al. The formation of concentric vorticity structure in typhoon [J]. J. Atmos. Sci., 2004, 61(22): 2722-2734.
[33] EMANUEL K A, NOLAN D S. Tropical cyclones and the global climate system [M]. Preprints, 26th Conference on Hurricanes and Tropical Meteorology, Miami, Florida. 2004.
[34] HOUZE, R A. Cloud Dynamics [M]. San Diego: Academic Press, 1993: 573.
[35] LI T, GE X Y, WANG B, et al. Tropical cyclogenesis associated with Rossby wave energy dispersion of a pre-existing Typhoon. Part II: numerical simulations [J]. J. Atmos. Sci., 2006, 63(5): 1390-1409.
[36] LEE C S, CHEUNG K W, HUI J N, et al. Mesoscale features associated with tropical cyclone formations in the Western North Pacific [J]. Mon. Wea. Rev., 2008, 136(6): 2006-2022.
[37] ZEHR R. Tropical cyclogenesis in the Western North Pacific [R]. NOAA Tech. Rep., NESDIS, 1992, 61: pp181.