[1] EMANUEL K A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance [J]. J. Atmos. Sci., 1986, 43(6): 585�C604.
[2] EMANUEL K A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics [J]. J. Atmos. Sci., 1995, 52(22): 3969-3976.
[3] ROSENTHAL S L. The response of a tropical cyclone model to variations in boundary layer parameters, initial conditions, lateral boundary conditions and domain size [J]. Mon. Wea. Rev., 1971, 99(10): 767-777.
[4] ZENG Zhi-hua, WANG Yu-qing, DUAN Yi-hong, et al. On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity [J]. Adv. Atmos. Sci., 2010, 27(2): 337-355.
[5] OOYAMA K. Numerical simulation of the life cycle of tropical cyclones [J]. J. Atmos. Sci., 1969, 26(1): 3-40.
[6] MALKUS J S, RIEHL H. On the dynamics and energy transformations in steady-state hurricanes [J]. Tellus, 1960, 12(1): 1-20.
[7] BISTER M, EMANUEL K A. Dissipative heating and hurricane intensity [J]. Meteor. Atmos. Phys., 1998, 65(3-4): 233-240.
[8] RIEHL H. Tropical Meteorology [M]. McGraw-Hill, 1954: 392pp.
[9] FAIRALL C W, KEPERT J D, HOLLAND G J. The effect of sea spray, on surface energy transports over the ocean [J]. Global Atmos. Ocean Syst., 1994, 2: 121-142.
[10] KEPERT J D, FAIRALL C W, BAO J W. Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets [M]// Air-Sea Exchange: Physics, Chemistry and Dynamics, GEERNAERT G L (Ed.), Kluwer Academic, 1999: 363-410.
[11] WANG Y, KEPERT J D, HOLLAND G J. The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity [J]. Mon. Wea. Rev., 2001, 129(10): 2481-2500.
[12] LIGHTHILL J, HOLLAND G J, GRAY W, et al. Global climate change and tropical cyclones [J]. Bull. Amer. Meteor. Soc., 1994, 75: 2147-2157.
[13] ANDREAS E L, EMANUEL K A. Effects of sea spray on tropical cyclone intensity [J]. J. Atmos. Sci., 2001, 58(24): 3741-3751.
[14] BAO J W, WILCZAK J M, CHOI J K, et al. Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development [J]. Mon. Wea. Rev., 2000, 128(7): 2190-2210.
[15] ALAMARO M, EMANUEL K A, COLTON J, et al. Experimental investigation of air-sea transfer of momentum and enthalpy at high wind speed [C]// Preprints, 25th Conference on Hurricanes and Tropical Meteorology, San Diego: Amer. Meteor. Soc., 2002: 67-668.
[16] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones [J]. Nature, 2003, 422: 279-283.
[17] DONELAN M A, HAUS B K, REUL N, et al. On the limiting aerodynamic roughness of the ocean in very strong winds [J]. Geophys. Res. Lett., 2004, 31, L18306, doi: 10.1029/2004GL019460.
[18] DRENNAN W M, ZHANG J A, French J R, et al. Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux [J]. J. Atmos. Sci., 2007, 64(4): 1103-1115.
[19] FRENCH J R, DRENNAN W M, ZHANG J A, et al. Turbulent fluxes in the hurricane boundary layer: Part I: Momentum flux [J]. J. Atmos. Sci., 2007, 64(4): 1089-1102.
[20] ZHANG J A, BLACK P G, FRENCH J R, et al. First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results [J]. Geophys. Res. Lett., 2008, 35, L14813, doi: 10.1029/2008GL034374.
[21] HONG S Y, DUDHIA J, CHEN S H. A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation [J]. Mon. Wea. Rev., 2004, 132(1): 103-120.
[22] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 2006, 134(9): 2318-2341.
[23] GRAY W M, RUPRECHT E, PHELPS R. Relative humidity in tropical weather systems [J]. Mon. Wea. Rev., 1975, 103(8): 685-690.
[24] WANG Y. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part Ⅰ: Model description and control experiment [J]. Mon. Wea. Rev., 2001, 129(6): 1370-1394.
[25] WANG Y. A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model �C TCM4: Model description and development of asymmetries without explicit asymmetric forcing [J]. Meteor. Atmos. Phys., 2007, 97(1-4): 93-116.
[26] LYKOSSOV V N., Numerical modelling of interaction between the atmospheric boundary layer and the Antarctic ice shelf [J]. Russ. J. Numer. Anal. Math. Modelling, 2001, 16: 315-330.
[27] SMITH R K, MONTGOMERY M T, NGUYEN S V. Tropical cyclone spin-up revisited [J]. Quart. J. Roy. Meteor. Soc., 2009, 135(642): 1321-1335.
[28] HOLTON J R. An Introduction to Dynamic Meteorology (Fourth Edition) [M]. San Diego: Academic Press, 2004: 101pp.
[29] HOUZE R A. Clouds in tropical cyclones [J]. Mon. Wea. Rev., 2010, 138(2): 293-344.