-
Abstract:
The impact of terrains on the precipitation of landfalling typhoon Talim (2005) over mainland China is investigated using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model. The simulated precipitation of simulated typhoon (the control) matches the observations closely. To compare with the control simulation, four sensitivity simulations were carried out in which terrains of Wuyi Mountain, Lushan, Dabieshan, and both Lushan and Dabieshan are completely removed respectively, but other surface properties were retained. It is found that the complex terrains of Wuyi Mountain, Lushan and Dabieshan have a significant impact on the rainfall intensity and distribution of Talim. As the terrains are removed, the rainfall is decreased very greatly and the rainfall in inland area is decreased much more than that in the coastal area. Besides, the rainfall distribution near the Lushan and Dabieshan is spread much more westward compared with the control simulation. Further analysis shows that the Wuyi Mountain would increase both the lower level air convergence and the upper level air divergence for Talim that just made landfall and thus it would contribute to the convection and increase rainfall intensity. It can be concluded that the terrains of Wuyi Mountain, Lushan and Dabieshan have obvious impacts on the Talim rainfall, and their impacts are different in various landfalling periods. The present study is a useful attempt to explore the influence of orography on the TCs in mainland China.
-
-