-
Abstract:
Due to global warming, extreme weather and climate events are becoming more frequent, highlighting the need to explore the changing characteristics of precipitation in China, including extreme precipitation. A clustering algorithm was developed to classify summer (June, July, and August) daily precipitation in China from 1961 to 2020, considering spatial distribution, standard deviations, and frequency of extreme precipitation events. The results reveal six distinct precipitation climate zones, a classification that differs from previous divisions. While overall precipitation has decreased in most regions, the frequency of extreme precipitation events has increased across all clusters, indicating a shift in precipitation distribution patterns. Analysis shows that the weakened Lake Baikal blocking high and strengthened Mongolian cyclone influence the arid region in northwest China (Cluster 1), which is characterized by the lowest precipitation. The transition zone between the monsoon and arid region (Cluster 2) is affected by the Mongolian cyclone, water vapor transport from the Indian Ocean, and shifts in the monsoon boundary. Clusters 3 and 4 represent areas associated with advancement and retreat of the summer monsoon. In the Meiyu region, two distinct subregions have been identified exist. Cluster 4 is primarily influenced by the East Asia-Pacific wave train. Despite sharing similar climate drivers and proximity, Clusters 4 and 5 differ significantly due to topographic variations and disparate levels of urbanization. Cluster 5 exhibits a higher average precipitation, greater variability, and more frequent extreme events. Cluster 6 exhibits the highest overall precipitation in the coastal areas of Guangdong and Guangxi, where abundant water vapor contributes to a higher frequency of extreme precipitation. In addition, anthropogenic activities and urbanization significantly influence precipitation in Beijing-Tianjin-Hebei and Yangtze River Delta regions. This research proposes a precipitation classification scheme integrating multiple precipitation parameters, providing support for risk management and mitigation strategies in the face of increasing extreme precipitation events.
-
-