ISSN 1006-8775CN 44-1409/P

    TESTING DRAG COEFFICIENT APPROACHES BY USING THE BUOY DATA COLLECTED IN MODERATE TO HIGH WIND UNDER FOLLOWING, CROSSING AND OPPOSING SWELL CONDITIONS

    • Hurricane intensity and track are strongly affected by air-sea interactions. Classified as following swells, crossing swells, and opposing swells, the observed wave height was parameterized by using the 10-m wind speed collected on 5 buoys by the National Buoy Data Center during 13 hurricane events. The path information of these 13 hurricanes was obtained from the National Hurricane Center Best Track (NHC-BT). Results show that the wave height increases exponentially with the 10-m wind speed, and the wave height reaches the maximum value, 11.2 m (8.1 m), when 10-m wind speed is 40 m s-1 under the following and crossing (opposing) swell conditions. We find that the wave steepness (the ratio of wave height to wave length) is proportional to the -2/3 power of the wave age (the ratio of wave phase velocity to 10-m wind speed). The parameterizations of friction velocity and drag coefficient are tested using the buoy data collected in moderate to high wind under following, crossing and opposing swell conditions. A wave age dependent equation for drag coefficient is found more accurate and suggested for future usage in numerical models. Further, these algorithms also suggest that wind-swell orientation needs to be considered to retrieve accurate surface drag under high winds and strong swells.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return