2002 Vol. 8, No. 1
2002, 8(1): 1-9.
Abstract:
According to the basic characteristics of the activities of summer monsoon in the South China Sea, a standardized index, Is, has been designed that integrates a dynamic factor (southwesterly component) and a thermodynamic factor (OLR) for the indication of summer monsoon in the South China Sea. With the index determined for individual months of June, July and August and the entire summertime from 1975 to 1999, specific months and years are indicated that are either strong or weak in monsoon intensity. The variation is studied for the patterns and s I ’s relationship is revealed with the onset of summer monsoon and the precipitation in Guangdong province and China. The results show that there are quasi-10 and quasi-3-4 year cycles in the interannual variation of the monsoon over the past 25 years. When it has an early (late) onset, the summer monsoon is usually strong (weak). In the strong (weak) monsoon years, precipitation tends to be more (less) in the first raining season of the year but normal or less (normal) in the second, in the province, but it would be more (less) in northeastern China and most parts of the northern China and south of the lower reaches of the Changjiang River and less (more) in the middle and lower reaches of the river, western part of northern China and western China.
According to the basic characteristics of the activities of summer monsoon in the South China Sea, a standardized index, Is, has been designed that integrates a dynamic factor (southwesterly component) and a thermodynamic factor (OLR) for the indication of summer monsoon in the South China Sea. With the index determined for individual months of June, July and August and the entire summertime from 1975 to 1999, specific months and years are indicated that are either strong or weak in monsoon intensity. The variation is studied for the patterns and s I ’s relationship is revealed with the onset of summer monsoon and the precipitation in Guangdong province and China. The results show that there are quasi-10 and quasi-3-4 year cycles in the interannual variation of the monsoon over the past 25 years. When it has an early (late) onset, the summer monsoon is usually strong (weak). In the strong (weak) monsoon years, precipitation tends to be more (less) in the first raining season of the year but normal or less (normal) in the second, in the province, but it would be more (less) in northeastern China and most parts of the northern China and south of the lower reaches of the Changjiang River and less (more) in the middle and lower reaches of the river, western part of northern China and western China.
2002, 8(1): 10-19.
Abstract:
By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105°E ~ 120°E, 5°N ~ 20°N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, θse should be greater than 335°K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105°E ~ 120°E,5°N ~ 20°N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.
By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105°E ~ 120°E, 5°N ~ 20°N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, θse should be greater than 335°K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105°E ~ 120°E,5°N ~ 20°N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.
2002, 8(1): 20-26.
Abstract:
Using the SST data series in tropical ocean (20°N ~ 20°S, 50°E ~ 80°W) during 1951 ~ 1997 to calculate its monthly mean square deviation, the work obtains results showing that interannual SST variability of the Pacific is more significant than that of the Indian Ocean, especially near the central and eastern equatorial Pacific (165°W~90°W, 6°N~6°S), where it ranges from 2°C to 4°C. The interannual SST variability is obvious in November and December but small in March and April. The interannual variability of “warm pool” SST is not so obvious as that of the eastern equatorial Pacific. However, interannual SST variability of the Indian Ocean ranges from 1°C to 2°C or so, being smaller than that of the Pacific. In the Indian Ocean, interannual SST variability of the Southern Hemisphere is more obvious than that of the Northern Hemisphere. According to above characteristics of interannual SST variability, the key sectors are determined.
Using the SST data series in tropical ocean (20°N ~ 20°S, 50°E ~ 80°W) during 1951 ~ 1997 to calculate its monthly mean square deviation, the work obtains results showing that interannual SST variability of the Pacific is more significant than that of the Indian Ocean, especially near the central and eastern equatorial Pacific (165°W~90°W, 6°N~6°S), where it ranges from 2°C to 4°C. The interannual SST variability is obvious in November and December but small in March and April. The interannual variability of “warm pool” SST is not so obvious as that of the eastern equatorial Pacific. However, interannual SST variability of the Indian Ocean ranges from 1°C to 2°C or so, being smaller than that of the Pacific. In the Indian Ocean, interannual SST variability of the Southern Hemisphere is more obvious than that of the Northern Hemisphere. According to above characteristics of interannual SST variability, the key sectors are determined.
2002, 8(1): 27-36.
Abstract:
By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.
By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.
2002, 8(1): 37-43.
Abstract:
Based on the analysis of NCEP height, wind and OLR data, the influence of spring equatorial eastern Pacific SSTA on the seasonal change from spring to summer of eastern Asian circulation has been investigated. Results show that related to the warm (cold) spring SSTA in the equatorial eastern Pacific, the anomalous anticyclone (cyclone) circulation emerges around the South China Sea and the Philippines, the strong (weak) west Pacific subtropical high locates to the west (east) of its normal position, which induces to the late (early) onset of the South China Sea monsoon. The numerical simulations have also shown that the remarkable influence of spring SSTA in the equatorial eastern Pacific on the spring seasonal change of eastern Asian circulation will last till summer.
Based on the analysis of NCEP height, wind and OLR data, the influence of spring equatorial eastern Pacific SSTA on the seasonal change from spring to summer of eastern Asian circulation has been investigated. Results show that related to the warm (cold) spring SSTA in the equatorial eastern Pacific, the anomalous anticyclone (cyclone) circulation emerges around the South China Sea and the Philippines, the strong (weak) west Pacific subtropical high locates to the west (east) of its normal position, which induces to the late (early) onset of the South China Sea monsoon. The numerical simulations have also shown that the remarkable influence of spring SSTA in the equatorial eastern Pacific on the spring seasonal change of eastern Asian circulation will last till summer.
2002, 8(1): 44-55.
Abstract:
The TEEOF method that expands temporally is used to conduct a diagnostic study of the variation patterns of 1, 3, 6 and 10 years with regard to mean air temperature over the globe and Southern and Northern Hemispheres over the course of 100 years. The results show that the first mode of TEEOF takes up more than 50% in the total variance, with each of the first mode in the interannual oscillations generally standing for annually varying patterns which are related with climate and reflecting long-term tendency of change in air temperature. It is particularly true for the first mode on the 10-year scale, which shows an obvious ascending trend concerning the temperature in winter and consistently the primary component of time goes in a way that is very close to the sequence of actual temperature. Apart from the first mode of all time sections of TEEOF for the globe and the two hemispheres and the second mode of the 1-year TEEOF, interannual variation described by other characteristic vectors are showing various patterns, with corresponding primary components having relation with long-term variability of specific interannual quasi-periodic oscillation structures. A 2 T test applied to the annual variation pattern shows that the abrupt changes for the Southern Hemisphere and the globe come closer to the result of a uni-element t test for mean temperature than those for the Northern Hemisphere do. It indicates that the T 2 test, when carried out with patterns of multiple variables, seems more reasonable than the t test with single elements.
The TEEOF method that expands temporally is used to conduct a diagnostic study of the variation patterns of 1, 3, 6 and 10 years with regard to mean air temperature over the globe and Southern and Northern Hemispheres over the course of 100 years. The results show that the first mode of TEEOF takes up more than 50% in the total variance, with each of the first mode in the interannual oscillations generally standing for annually varying patterns which are related with climate and reflecting long-term tendency of change in air temperature. It is particularly true for the first mode on the 10-year scale, which shows an obvious ascending trend concerning the temperature in winter and consistently the primary component of time goes in a way that is very close to the sequence of actual temperature. Apart from the first mode of all time sections of TEEOF for the globe and the two hemispheres and the second mode of the 1-year TEEOF, interannual variation described by other characteristic vectors are showing various patterns, with corresponding primary components having relation with long-term variability of specific interannual quasi-periodic oscillation structures. A 2 T test applied to the annual variation pattern shows that the abrupt changes for the Southern Hemisphere and the globe come closer to the result of a uni-element t test for mean temperature than those for the Northern Hemisphere do. It indicates that the T 2 test, when carried out with patterns of multiple variables, seems more reasonable than the t test with single elements.
2002, 8(1): 56-62.
Abstract:
This study focuses on deep convection anomalies in tropical regions in winter-spring period and their possible influence on the following summer rainfall in Shandong province. On the basis of monthly precipitation wet and dry summers in Shandong are defined according to a precipitation index. Then monthly OLR data, observed by NOAA satellites, are used to diagnose the features of deep convection for both wet and dry summers. It is found that negative anomalies seem dominant prior to wet summers, while large areas of positive anomalies appear prior to dry summers in tropical oceans. The differences are remarkable especially in the western, middle and eastern tropical Pacific as well as in the tropical Indian Ocean. Correlative analysis confirms the relations between OLR and precipitation. Subtropical High, which plays an essential role in summer rainfall, is also connected with the deep conviction. Altogether eight EOF-CCA forecast models are established on the basis of the above study. The assessment of the models relies on the gauge observing precipitation in 1997 and 1998. The results show that models using spring OLR data appear to be more practicable than those using winter OLR data, and the models established with OLR in western Pacific and the Indian Ocean perform better than the others.
This study focuses on deep convection anomalies in tropical regions in winter-spring period and their possible influence on the following summer rainfall in Shandong province. On the basis of monthly precipitation wet and dry summers in Shandong are defined according to a precipitation index. Then monthly OLR data, observed by NOAA satellites, are used to diagnose the features of deep convection for both wet and dry summers. It is found that negative anomalies seem dominant prior to wet summers, while large areas of positive anomalies appear prior to dry summers in tropical oceans. The differences are remarkable especially in the western, middle and eastern tropical Pacific as well as in the tropical Indian Ocean. Correlative analysis confirms the relations between OLR and precipitation. Subtropical High, which plays an essential role in summer rainfall, is also connected with the deep conviction. Altogether eight EOF-CCA forecast models are established on the basis of the above study. The assessment of the models relies on the gauge observing precipitation in 1997 and 1998. The results show that models using spring OLR data appear to be more practicable than those using winter OLR data, and the models established with OLR in western Pacific and the Indian Ocean perform better than the others.
2002, 8(1): 63-74.
Abstract:
The landfall of tropical cyclones in the eastern part of China falls in the category of small probability events. Constructing a step function with intervals adequately divided can help reflect the non-linear distribution of conditional probability for a landfall event. For the prediction of landfall event probability, factors applying the step function in transformation are superior to the standardized factors that are linearly related. The prediction scheme discussed in the work uses transformation factors of step function to formulate prediction models for tropical cyclones making landfalls in eastern China, through screening with non-linear correlative ratios and REEP analysis. Classified models for statistic-synoptics, statistic -climatology and statistic-dynamics have been constructed using initial field data and numerical prediction output. Forecasting skills have been improved due to ensemble of predictions using these classified models. As shown in forecasting evaluations and experiments, the scheme is capable of predicting tropical cyclones that make landfalls in eastern China.
The landfall of tropical cyclones in the eastern part of China falls in the category of small probability events. Constructing a step function with intervals adequately divided can help reflect the non-linear distribution of conditional probability for a landfall event. For the prediction of landfall event probability, factors applying the step function in transformation are superior to the standardized factors that are linearly related. The prediction scheme discussed in the work uses transformation factors of step function to formulate prediction models for tropical cyclones making landfalls in eastern China, through screening with non-linear correlative ratios and REEP analysis. Classified models for statistic-synoptics, statistic -climatology and statistic-dynamics have been constructed using initial field data and numerical prediction output. Forecasting skills have been improved due to ensemble of predictions using these classified models. As shown in forecasting evaluations and experiments, the scheme is capable of predicting tropical cyclones that make landfalls in eastern China.
2002, 8(1): 75-84.
Abstract:
Precipitation anomalies in the first raining season of southern China were analyzed, with the suggestion that there are obvious interannual variation of peak values. In the raining season, the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale. Corresponding to years of more or less precipitation in the raining season, there are sharply opposite distribution across the nation in the simultaneous periods. In addition, by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~ August of the previous year), a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season. Discussions are also made of the sensitive period, its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China. In the last part of the work, relationship between the SSTA in the sensitive zone and global SSTA is analyzed. A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward.
Precipitation anomalies in the first raining season of southern China were analyzed, with the suggestion that there are obvious interannual variation of peak values. In the raining season, the general tendency of precipitation is not obvious and the anomalous oscillation is multi-scale. Corresponding to years of more or less precipitation in the raining season, there are sharply opposite distribution across the nation in the simultaneous periods. In addition, by studying the distribution of correlation between anomalous precipitation in southern China in the first raining season and SSTA over offshore waters of China in the preceding period (June ~ August of the previous year), a sensitive zone of waters has been found that has steady effect on the precipitation of southern China in the season. Discussions are also made of the sensitive period, its simultaneous SSTA and subsequent anomalous circulation field in relation to precipitation anomalies and simultaneous circulation field in the first raining season of southern China. In the last part of the work, relationship between the SSTA in the sensitive zone and global SSTA is analyzed. A possible mechanism by which SSTA in offshore Chinese waters affects the precipitation anomalies in the first raining season of southern China is put forward.
2002, 8(1): 85-92.
Abstract:
Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of rooms facing north-south under different weather conditions. Significant warming effect has been identified in terms of lowest and daily-mean indoor temperature in the area of Kunming. The heating amplitude ranges from 7.7°C to 10.0°C and from 4.6°C to 5.8°C for the interior part of rooms facing the south and from 4.6°C to 7.0°C and from 1.3°C to 4.4°C for the interior part of rooms facing the north, respectively for the two elements. The highest air temperature is higher indoor than outdoor for rooms facing the south, but otherwise is usually true for rooms facing the north. Additional findings point out that buildings not only help maintain relatively warm indoor temperature but delay its variation. The diurnal cycle of temperature indoor is smaller and ranges by 40% ~ 48% for south-facing rooms, and by 20% ~ 30% for north-facing rooms, than outdoor, and the highest temperature is about 2 hours late inside the room than outside. It shows how inertly indoor temperature varies. The work also finds that relative humidity is less indoor in southward rooms than in northward ones and difference is the largest on fine days but the smallest when it is overcast. For the diurnal variation, the indoor relative humidity is large at nighttime with small amplitude but small during daytime with large amplitude. The above-presented results can be served as scientific foundation for more research on climate in low-latitude cities and rational design of urban architectures.
Analyzing observations of wintertime air temperature in both indoor and outdoor surroundings in Kunming, a city lying in low latitudes, characteristics of temperature and humidity have been studied for the interior of rooms facing north-south under different weather conditions. Significant warming effect has been identified in terms of lowest and daily-mean indoor temperature in the area of Kunming. The heating amplitude ranges from 7.7°C to 10.0°C and from 4.6°C to 5.8°C for the interior part of rooms facing the south and from 4.6°C to 7.0°C and from 1.3°C to 4.4°C for the interior part of rooms facing the north, respectively for the two elements. The highest air temperature is higher indoor than outdoor for rooms facing the south, but otherwise is usually true for rooms facing the north. Additional findings point out that buildings not only help maintain relatively warm indoor temperature but delay its variation. The diurnal cycle of temperature indoor is smaller and ranges by 40% ~ 48% for south-facing rooms, and by 20% ~ 30% for north-facing rooms, than outdoor, and the highest temperature is about 2 hours late inside the room than outside. It shows how inertly indoor temperature varies. The work also finds that relative humidity is less indoor in southward rooms than in northward ones and difference is the largest on fine days but the smallest when it is overcast. For the diurnal variation, the indoor relative humidity is large at nighttime with small amplitude but small during daytime with large amplitude. The above-presented results can be served as scientific foundation for more research on climate in low-latitude cities and rational design of urban architectures.
2002, 8(1): 93-103.
Abstract:
Climatological laws are studied for the annual frequency of tropical cyclone occurrence and the date of the yearly first landfall, which take place in the Guangdong province or pose serious threats on it from 1951 to 1999, using the data in the Yearly Book on Typhoons. A new method that has developed over recent years for the study of temporal sequences, the wavelet analysis, is used, in addition to more common statistical approaches. By analyzing two wavelet functions, MHAT and MORLET, we have compared the results of transformation of the wavelets provided that other conditions remain unchanged. It is discovered that the variance of MORLET wavelet has better indication of primary periods; period-time sequence charts can reflect major affecting periods for individual sections of time; when compared with the original sequence, the chart shows a little shift. On the other hand, such shift is absent in the MHAT wavelet, but its higher frequency part of variance covers up the primary periods to make its variance less predominant as compared to the MORLET wavelet. Besides, the work compares two different assumptions of an amplifying factor a. It is found that primary periods can be shown more clearly in the variance when a takes the exponential of 2 than it takes values continuously. Studying the annual frequency of tropical cyclones and the date of first appearance for periodic patterns, we have found that the primary periods extracted by this approach are similar to those obtained by wavelet transformation.
Climatological laws are studied for the annual frequency of tropical cyclone occurrence and the date of the yearly first landfall, which take place in the Guangdong province or pose serious threats on it from 1951 to 1999, using the data in the Yearly Book on Typhoons. A new method that has developed over recent years for the study of temporal sequences, the wavelet analysis, is used, in addition to more common statistical approaches. By analyzing two wavelet functions, MHAT and MORLET, we have compared the results of transformation of the wavelets provided that other conditions remain unchanged. It is discovered that the variance of MORLET wavelet has better indication of primary periods; period-time sequence charts can reflect major affecting periods for individual sections of time; when compared with the original sequence, the chart shows a little shift. On the other hand, such shift is absent in the MHAT wavelet, but its higher frequency part of variance covers up the primary periods to make its variance less predominant as compared to the MORLET wavelet. Besides, the work compares two different assumptions of an amplifying factor a. It is found that primary periods can be shown more clearly in the variance when a takes the exponential of 2 than it takes values continuously. Studying the annual frequency of tropical cyclones and the date of first appearance for periodic patterns, we have found that the primary periods extracted by this approach are similar to those obtained by wavelet transformation.
2002, 8(1): 104-112.
Abstract:
The intensive observation data of the Nansha Islands are used to study and discuss the meso-and fine-scale systems existing with large-scale monsoon circulation during the onset of the southwesterly monsoon in the low-latitude areas of the South China Sea. Effects of low-latitude tropical meso-scale gravity waves on weather have been disclosed. The generation and transportation of the local meso-scale gravity wave have been preliminarily studied from the viewpoint of dynamics.
The intensive observation data of the Nansha Islands are used to study and discuss the meso-and fine-scale systems existing with large-scale monsoon circulation during the onset of the southwesterly monsoon in the low-latitude areas of the South China Sea. Effects of low-latitude tropical meso-scale gravity waves on weather have been disclosed. The generation and transportation of the local meso-scale gravity wave have been preliminarily studied from the viewpoint of dynamics.