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Abstract: In the present study, multimodel ensemble forecast experiments of the global horizontal irradiance (GHI) were
conducted using the dynamic variable weight technique. The study was based on the forecasts of four numerical models,
namely, the China Meteorological Administration Wind Energy and Solar Energy Prediction System, the Mesoscale
Weather Numerical Prediction System of China Meteorological Administration, the China Meteorological Administration
Regional Mesoscale Numerical Prediction System-Guangdong, and the Weather Research and Forecasting Model-Solar,
and observational data from four photovoltaic (PV) power stations in Yangjiang City, Guangdong Province. The results
show that compared with those of the monthly optimal numerical model forecasts, the dynamic variable weight-based
ensemble forecasts exhibited 0.97%–15.96% smaller values of the mean absolute error and 3.31%–18.40% lower values of
the root mean square error (RMSE). However, the increase in the correlation coefficient was not obvious. Specifically, the
multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m–2, particularly below 400 W m–2,
with RMSE reductions as high as 7.56%–28.28%. In contrast, the RMSE increased at GHI levels above 700 W m–2. As for
the key period of PV power station output (02:00–07:00), the accuracy of GHI forecasts could be improved by the
multimodel ensemble: the multimodel ensemble could effectively decrease the daily maximum absolute error (AEmax) of
GHI forecasts. Moreover, with increasing forecasting difficulty under cloudy conditions, the multimodel ensemble, which
yields data closer to the actual observations, could simulate GHI fluctuations more accurately.
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1 INTRODUCTION
Under the carbon peaking and carbon neutrality

targets, the development of a new power system that
mainly relies on new energy is regarded as an important
precondition and necessary direction to achieve the low-
carbon transition of modern power systems (Han et al. [1]).
China’s new energy has entered a large-scale, high-
penetration, and market-oriented development stage. By

the end of 2023, the country’s accumulative installation
capacity of power generation have reached approximately
2.92 TW, of which the installation capacity of photovoltaic
(PV) power amounted to approximately 610 GW (Nea [2]),
accounting for more than 20% of the total amount. Solar
power is playing an increasingly important role in new
power systems, highlighting the need for grid integration
(Jin et al. [3]). In practice, the dependable capacity offered
by new energy systems is less than 5% due to power
prediction fluctuations (Creei [4]). Therefore, more
accurate power predictions are important for solar power
generation integration and power grid dispatching.

Global horizontal irradiance (GHI) forecast provides
a direct data source for power prediction. Its accuracy
determines, to a great extent, the prediction accuracy of the
power output of PV power stations, which serves as the
essentials for power grids to formulate dispatching plans
and ensure energy supply; such a forecast is therefore
associated with power system safety and reliability (Singla
et al. [5]). The GHI, which is highly dependent on
atmospheric conditions, exhibits significant seasonality,
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volatility, and intermittency (Pardeep et al. [6]). At present,
GHI short-term forecast mainly stems from numerical
weather prediction (NWP), but existing NWP suffers an
obvious defect in the parameterization scheme of cloud
microphysical processes, which composes the main factor
leading to NWP uncertainty (Huang et al. [7]). Moreover,
cloud cover directly affects GHI forecasts, causing the
accuracy to not fully meet the assessment requirements of
PV power stations. Furthermore, different numerical
prediction models exhibit significant variations in terms
of their dynamic frameworks, terrain features,
parameterization schemes, physical processes, spatial and
temporal resolutions, etc., which also lead to notable
differences in the prediction results of NWP models
(Bougeault et al. [8]). Therefore, it seems necessary to
improve the accuracy of GHI forecasts by using various
postprocessing techniques. By integrating the effective
forecast information of multiple models, a multimodel
ensemble, as an effective postprocessing tool, could
significantly improve the forecast skill and reliability
(Zhu [9]; Rahimi et al. [10]).

In deterministic forecasting, a multimodel ensemble
normally encompasses two schemes: the equal-weight
multimodel ensemble, which mainly includes the
ensemble mean and bias-removed ensemble mean, and
the unequal-weight multimodel ensemble, which mostly
includes the superensemble, Kalman filter, and Bayesian
model averaging. Compared with the equal-weight
multimodel ensemble, the unequal-weight multimodel
ensemble assigns a higher weight to models with high
prediction skills by determining the prediction ability of
each model during the training period in the ensemble
process. It takes full advantage of each model and thus has
better performance than equal-weight multimodel
ensemble (Zhi et al. [11]). The allocation of reasonable
weights to each model in the unequal-weight ensemble
scheme is thus an important procedure for obtaining final
ensemble prediction results (Zhou et al. [12]). Many
scholars have applied the unequal-weight multimodel
ensemble method in weather forecasting, which has
effectively improved forecast accuracy. Wei et al. [13]

used the hierarchical optimization weight ensemble
forecast method to conduct an ensemble experiment for
generating precipitation forecasts in the Pan-Yangtze River
region and suggested that the threat scores of the ensemble
forecasts were greater than those of the numerical model
forecasts at all intervals and all precipitation levels. Sheng
et al. [14] compared different objective forecasting methods
and optimal ensemble forecasts of temperature, and the
results demonstrated that the ensemble forecasting method
could improve the accuracy on the basis of various
objective forecasts. Tong et al. [15] employed the
Bayesian model averaging method to create an ensemble
of four models of the China Meteorological
Administration (CMA) model system, which effectively
reduced the prediction errors of the 2-m temperature, 10-m
wind speed, and 2-m relative humidity in the Beijing–

Tianjin–Hebei region. Wu et al. [16] used augmented
complex extended Kalman filter to conduct multimodel
ensemble forecast experiments of the wind speed in East
China. They effectively reduced the forecast error and
verified that multimodel ensembles were more effective in
complex terrain areas (Wu et al. [16]). Zhi et al. [17]

developed a multimodel ensemble of surface and upper-
air wind fields in East China by using Kalman filter. The
results showed that the error significantly decreased after
applying the multimodel ensemble, while for the upper-air
wind field, the change in the ensemble forecast error
associated with height was less than that in the single-
model forecast error. Zhao et al. [18] developed an
improved ensemble method based on the Markov
process and ordered weighted average for day-ahead
forecast of local wind speeds. They effectively reduced
the uncertainties of numerical simulations and showed that
an ensemble with fewer members could generate better
results than using a combination of all single members
(Zhao et al. [18]).

In Chinese and overseas weather forecasting efforts,
although multimodel ensemble techniques have been
extensively adopted to improve the accuracy of
temperature, precipitation, and wind speed forecasts (Du
et al. [19]), their application in GHI forecasting remains
inadequate, and currently, available research mainly
focuses on the integration of multiple correction methods
for a single numerical forecast model. An extensive
literature review reveals the following: Sun et al. [20]

proposed a decomposition-clustering-ensemble learning
method for GHI forecasting, which provided a favorable
effect in the Beijing area. Guermoui et al. [21] used the
integration technique of multiple machine learning
methods to effectively improve the GHI prediction
accuracy in Algeria, and the experimental results
indicated that the integration technique was superior to
the benchmark model across all prediction stages
(Guermoui et al. [21]). Baek et al. [22] compared different
combinations of NWP scenarios and machine learning
algorithms by using weighted integration of various
machine learning models. They found that the best
model could be obtained from the combinations of
multiple prediction machines through weighted averaging
and the use of all NWP scenarios (Baek et al. [22]). Jiang et
al. [23] suggested that the integrated learning framework
could achieve superior performance and improve
prediction stability. Basaran et al. [24] evaluated several
ensemble models in solar irradiance estimation including
random forest, support vector regression, artificial neural
network, and decision tree. Despite the above works, there
is little research on multimodel ensemble forecasting for
GHI, and the effect of multimodel ensemble forecasting at
PV power stations need to be verified further.

Based on the above research, from the perspective of
multimodel ensemble forecasts of GHI, in this paper, GHI
observation data from PV power stations were used to
dynamically correct multiple numerical model forecasts,
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and the dynamic variable weight multimodel ensemble
technique was then employed to establish a forecast
model. The variable weight theory could combine the
forecasting models preferably, which mainly included
statistical methods and artificial intelligence methods (Zhi
et al. [17]; Jiang et al. [25]; Chu et al. [26]). Rolling
multimodel ensemble experiments were conducted at four
PV power stations in Yangjiang City, Guangdong
Province, and the ensemble forecast performance was
evaluated according to the root mean square error
(RMSE), mean absolute error (MAE), correlation
coefficient R, and absolute error (AE). All the above
efforts aimed to eliminate the systematic deviation and
maximize the performance of each numerical forecast
model to obtain the optimal ensemble forecast. The
accuracy of GHI forecasts at PV power stations could
thus be improved.

2 DATA AND METHODS
2.1 Data

In this paper, Yangjiang City (21.5°–22.7°N, 111.3°–
112.4°E), Guangdong Province, was selected as the
research area. Located on the southwestern coast of
Guangdong Province, Yangjiang experiences a typical
subtropical monsoon climate, with long durations of
sunshine and abundant heat. The terrain of Yangjiang
City is dominated by mountainous and hilly areas, with
mountains in its eastern, western, and northern parts, while
its southern part faces the South China Sea. The four PV
power stations in Yangjiang City, selected as targets in this
study, are all situated in relatively flat terrain, with an
altitude of less than 30 m. The distribution of the four PV
power stations is shown in Fig. 1.

The observational data used were GHI data from the
four meteorological stations at the center of each PV

power station. These observational data were chosen as
they can better represent the GHI observations at each PV
power station. The duration of the observation sequence
was the entire year of 2022, and the observation frequency
was 15 minutes. The GHI observational data obtained
from each PV power station were subjected to quality
control procedures according to the Solar Energy Resource
Assessment Method GB/T 37526–2019 [27], and any data
exceeding 1400 W m–2 and data remaining unchanged for
longer than five consecutive hours were treated as default
values. After the quality control procedure, 53.24%,
96.29%, 96.28%, and 96.16% of the total observational
data from the four PV power stations were retained.
Notably, data from PV station 1 in April, May, August,
September, and December were not available, but the
quality of data during the remainder of the year was much
better.

The numerical models adopted in this paper were the
China Meteorological Administration Wind Energy and
Solar Energy Prediction System (CMA-WSP), the
Mesoscale Weather Numerical Prediction System of
China Meteorological Administration (CMA-MESO), the
China Meteorological Administration Regional Mesoscale
Numerical Prediction System-Guangdong (CMA-GD),
and the Weather Research and Forecasting Model-Solar
(WRF-SOLAR). The CMA-WSP, CMA-MESO, and
CMA-GD models are wind and solar numerical
forecasting models independently developed by the
CMA and operated in real time, while the WRF-SOLAR
model is an important part of the National Center for
Atmospheric Research (NCAR) solar power forecasting
system. The WRF-SOLAR model was designed
specifically to meet solar forecasting demands, and it is
also operated in real time by the CMA. The initial time of
these four models is 12:00 UTC. For the PV power
stations, since a 24-h ahead forecast is required for
assessment (i.e., 24 hours starting at 00:00 on the
forthcoming day, Beijing time, BJT), the model forecast
period was therefore chosen as 52 hours. Moreover, the
forecast sequence duration was still the whole year of
2022. The forecast details of each model used are provided
in Table 1.

In this research, the proximal point algorithm was
applied to extract GHI forecast data at the target points (the
locations of the four PV power stations) from the four
numerical models listed in Table 1 for forecast dataset
development.
2.2 Methods

To conduct GHI forecast multimodel ensemble
experiments, the dynamic variable weight ensemble
method was adopted for modeling station-by-station
forecasts. The key technique was a weighted bias-
removed ensemble, where the weights were determined
by the reciprocal of the prediction errors of each numerical
model within a certain training period that dynamically
slid with the rolling updates of the forecasts (Liu et al. [28]).
First, with the use of the GHI observations of the PV
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Figure 1. Research area and location of the four PV stations.
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power stations, deviation calculations and dynamic
deviation corrections of different numerical model
forecasts were performed. Then, through statistical
analysis of the deviation values, the weight of each
numerical model was determined, and a dynamic variable
weight multimodel ensemble forecast model could be
established for each PV power station. In this paper, the
training period was set to 10 days, namely, by applying the
error analysis and weight coefficient data of the previous
ten days, rolling correction and daily ensemble forecasting
for a specific day could be fulfilled, and the specific steps
are as follows:

By calculating the forecast errors of each numerical
model forecast for each PV power station, we set the
training period to 10 days:

FBE = O (1)mi mi i

where Fmi is the GHI forecast value at the i-th forecast time
of the m-th numerical model for a single power station, Oi
denotes the corresponding GHI observation value, and
BEmi is the error of the i-th forecast time of the m-th
numerical model.

Sequencing the errors of the m-th numerical model in
ascending order at all forecast times during the training
period for a single power station, we applied the percentile
method to calculate the deviation in the GHI forecasts of
each numerical model:

BES = BE + 2BE + BE
4 (2)m

m m m0.25 0.5 0.75

where BESm is the systematic forecast deviation during the
training period of the m-th numerical forecast model.

The forecasts of each numerical model could be
corrected as follows:

FFF = BES (3)mi mi m

where FFmi is the forecast result at the i-th forecast time of
the m-th numerical model after deviation correction.

According to the statistical results of the forecast
errors of each numerical model during the training period,
the ensemble weight of each numerical model could be
calculated as follows:

W A

A
=

1

1 (4)m
m

m
M

m=1

where M is the number of numerical models involved in
the ensemble, and Am is the sum of the AE values during
the training period of the m-th numerical prediction model.

The dynamic variable weight multimodel ensemble

model could be established as follows:

Y W= × FF (5)i
m

M

m mi
=1

where Yi is the multimodel ensemble GHI forecast result at
the i-th forecast time.

Given that the temporal resolution of the CMA-
MESO model is 1 hour and that of the other three
numerical models is 15 minutes, the four models were
assembled for each hour of the day, while three models—
CMA-WSP, CMA-GD, and WRF-SOLAR—were
assembled for the remainder of the time.

The MAE, RMSE, R, and AEmax (as the temporal
resolution was 15 minutes, there were 96 forecast results
per day, corresponding to 96 AEs, and the maximum one
was defined as AEmax) were used for evaluation. All the
evaluations were independent. These metrics could be
obtained as follows:
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whereOi is the observation value,Fi is the forecast value, n
is the total number of samples, Oi is the average value of
the observation samples, and Fi is the average value of the
forecast samples.

In this study, the GHI forecast error was evaluated for
the region (the four PV power stations as a whole) and for
individual stations. The evaluation period ranged from 0 to
24 hours a day ahead (i.e., 29–52 hours of each numerical
model forecast), and the evaluation duration was the entire
year of 2022.

3 RESULTS
3.1 Monthly forecast error evaluation

Table 2 provides the results of the performance
evaluation of the monthly GHI forecasts for the region.
Notably, the CMA-GD model exhibited the smallest error
from January to December among the four numerical
models. The average MAE was 134 W m–2, and the RMSE

Table 1. Details of the numerical prediction models.

Model Temporal resolution (min) Spatial resolution (km) Forecast element Forecast period (h)
CMA-WSP 15 9

GHI 52
CMA-MESO 60 3
CMA-GD 15 3

WRF-SOLAR 15 9
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was 204 W m–2 for 12 months. On the other hand, the
CMA-WSP model attained the highest R value, and the
average value for 12 months reached 0.86. There were
differences in each month: the CMA-WSP model
performed best in January, February, March, and
December; the CMA-GD model performed best in April,
May, June, July, August, and November; the CMA-MESO
model performed best in September; the WRF-SOLAR
model performed best in October. The forecast errors of
the multimodel ensemble (referred to as ENSEMBLE in
the figures and tables) were significantly reduced: the
average MAE reached 119 W m–2, and the RMSE was
181 W m–2 for 12 months, which were 11.19% and 11.27%
lower, respectively, than those of the optimal numerical
models, while R slightly increased to 0.88. The forecast
performance of the multimodel ensemble obviously
differed each month. The smallest errors occurred from
January to September and also in November, and the MAE
and RMSE values decreased by 0.97%–15.96% and
3.31%–18.40%, respectively, compared to those of the
monthly optimal numerical model forecasts. However, in
October, the forecast error after the multimodel ensemble
application was slightly greater than that of the optimal
numerical model forecast. In December, the optimal
numerical model and multimodel ensemble attained
similar forecast performance levels. The improvement in
R obtained by the multimodel ensemble was not obvious
compared with that of the optimal numerical model
forecast, and the values ranged from only 1.12% to
2.47% in 8 out of 12 months.

The forecast errors were directly related to the
observed GHI values, which exhibited obvious diurnal
variations. To analyze the performance of the multimodel
ensemble forecasts at different GHI intensities, we
considered three GHI intervals in this study: (0, 400),
[400, 700], and (700, 1500). Fig. 2 shows the results of the
intensity level evaluation of regional GHI forecasts. The
performance of each numerical forecast model varied

within different intervals. The multimodel ensemble
mainly improved GHI forecasting performance below
700 W m–2. In particular, at GHI levels lower than
400 W m–2, the forecast error of the CMA-GD model,
among four numerical models, was the smallest, but the
multimodel ensemble error was smaller than that of the
CMA-GD model, with a 7.56% to 28.28% reduction in the
RMSE value. The CMA-GD and CMA-WSP model
forecasts exhibited advantages within the GHI range of
400 to 700 W m–2, while the multimodel ensemble forecast
could reduce the RMSE by 4.72% to 26.10% in 9 out of

Table 2. Comparison of the performance of the monthly multimodel ensemble and numerical model forecasts.

Month
MAE (W m–2) RMSE (W m–2) R

ENSE
MBLE

CMA
WSP

CMA
MESO

CMA
GD

WRF
SOLAR

ENSE
MBLE

CMA
WSP

CMA
MESO

CMA
GD

WRF
SOLAR

ENSE
MBLE

CMA
WSP

CMA
MESO

CMA
GD

WRF
SOLAR

1 105 122 131 135 134 180 207 211 216 225 0.79 0.79 0.76 0.72 0.77
2 81 91 106 101 113 139 154 177 163 193 0.90 0.89 0.83 0.86 0.84
3 114 130 132 142 165 176 209 208 217 262 0.87 0.85 0.83 0.81 0.82
4 109 150 121 110 147 164 237 192 170 233 0.92 0.89 0.90 0.92 0.90
5 119 156 151 137 172 184 244 240 217 269 0.86 0.84 0.78 0.81 0.83
6 127 156 158 152 180 193 235 246 237 270 0.85 0.83 0.76 0.77 0.82
7 141 150 142 141 151 202 232 217 209 236 0.91 0.89 0.90 0.90 0.90
8 140 166 161 166 171 206 249 251 249 260 0.83 0.82 0.77 0.77 0.81
9 136 160 131 147 159 199 247 203 226 243 0.89 0.87 0.90 0.86 0.88
10 141 122 130 132 103 191 195 185 180 163 0.94 0.93 0.94 0.94 0.95
11 103 129 126 118 140 161 200 186 174 211 0.86 0.80 0.82 0.84 0.83
12 107 109 113 129 117 172 171 168 191 181 0.88 0.87 0.88 0.84 0.87

Mean 119 137 133 134 146 181 215 207 204 229 0.88 0.86 0.84 0.84 0.85
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Figure 2. Comparison of the monthly multimodel ensemble and
numerical model forecasts at different intensities. RMSE was
used for evaluation, and the different GHI intensities are (a) 0 <
GHI<400 W m–2, (b) 400 W m–2≤GHI≤700 W m–2, and (c)
700 W m–2<GHI<1500 W m–2.
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12 months. At GHI levels greater than 700 W m–2, the
forecasts of each numerical forecast model were
significantly smaller than the observations. The WRF-
SOLAR model had the lowest deviation, and therefore its
forecast error was the smallest. However, the RMSE
increased after the application of multimodel ensemble.
The insufficient samples within intervals above 700 W m–2

(Table 3), coupled with the larger forecast error and
fluctuation amplitude of the numerical model, partly
contributed to an increased or even reversed systematic
correction deviation in the process of correcting each
numerical model with the rolling deviation over the
previous ten days, resulting in an increase in the forecast
error (Eq. 3) after multimodel ensemble implementation.
3.2 Diurnal variation in forecast error evaluation

The GHI value at midday, the key period for the PV

power station output, is high, and the accuracy of GHI
forecasting is more important for this period. To examine
the performance of the multimodel ensemble forecasts at
different times of one day, the regional GHI forecasts were
compared over time. Fig. 3 shows the evaluation results of
the RMSE for each month. It suggests that the
improvement effect of the multimodel ensemble was the
greatest at midday when the RMSE reached the highest
value. Meanwhile, the multimodel ensemble performance
varied month by month. In months with larger numerical
model forecast errors, the improvement effect of the
multimodel ensemble was greater, but the multimodel
ensemble yielded a limited improvement effect in months
with smaller numerical model forecast errors. Specifically,
compared with the optimal numerical model forecast, the
multimodel ensemble provided the best GHI forecast

Table 3. Monthly sample size at different GHI intensities.

GHI (W m–2)
Sample size

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(0, 400) 9653 7311 9121 5104 6563 9244 7765 5950 4591 5868 8893 3293
[400, 700] 1739 950 1969 1389 1268 2279 2498 1253 1484 2809 1795 744
(700, 1500) 489 677 1636 1500 1111 1922 3166 1295 1622 3007 698 577
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Figure 3. Monthly diurnal variations in the multimodel ensemble and numerical model forecasts. RMSE was used for evaluation from
20:00 UTC to 12:00 UTC the next day.
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improvement in March, May, June, July, and August, and
the RMSE of the multimodel ensemble forecast could be
reduced by 33–85 W m–2 from 02:00 UTC to 07:00 UTC.
In January, February, April, September, and November, the
RMSE values of the multimodel ensemble forecasts were
slightly smaller than those of the optimal numerical model
forecasts. Nevertheless, the performance of the multimodel
ensemble forecast in October and December was worse. In
general, for the key output period at midday, the
multimodel ensemble forecast attained the lowest RMSE
and the most stable effect. Therefore, the effectiveness of
the multimodel ensemble in improving the GHI forecast
accuracy during the key period of the PV output could be
verified.
3.3 Forecast error evaluation at each PV station

Figure 4 shows the forecast errors for each PV power
station. In the scope of the numerical model, at PV station
1, the forecast error of the CMA-WSP model was the
smallest, and the R of the WRF-SOLAR model was the
highest. At PV station 2, the forecast error of the CMA-
MESO model was the smallest, and the R of the CMA-
WSP model was the highest. At PV station 3, the forecast
errors of the CMA-GD and CMA-WSP models were
relatively small, and the R of the CMA-WSP model was
the highest. At PV station 4, the forecast errors of the
CMA-GD and CMA-MESO models were relatively small,
and the R of the CMA-WSP model was the highest.
Moreover, the numerical model forecast error at PV station
2 was the smallest, indicating that the numerical model
prediction capability significantly differed at various PV
power stations.

To analyze the applicability and duplicability of the
multimodel ensemble model at the different PV power
stations, the ensemble effect at each PV power station for
the whole year was evaluated. The results illustrated that
the multimodel ensemble improved the forecast effect at
these four PV power stations to different extents, as
reflected by the smallest forecast errors and highest R
values. Compared with the optimal numerical model
forecasts, the MAE and RMSE values of the multimodel
ensemble at the four PV power stations decreased by
13–19 W m–2 and 20–30 W m–2, respectively. The R values
at the three stations, except for PV station 1, increased by
0.01–0.02.
3.4 Maximum forecast error evaluation at the PV stations

The fluctuation in the PV power output is the greatest
challenge for grid integration. In addition to the overall
monthly forecast accuracy, power stations and power grids
notably consider the transition in the PV power curve (Yu
et al. [29]), which can be assessed through the monthly
average value of the AEmax of GHI forecasts. The
assessment can reflect the precision of the starting/
ending time and the magnitude of weather transition
determined by numerical models, especially GHI
fluctuations due to cloud cover variations, which
constitutes a complex issue and bottleneck in the high-
temporal-resolution numerical model forecasting. Fig. 5
shows the evaluation results for PV station 4 as an
example. The monthly mean of AEmax of each numerical
model forecast is usually very large. The AEmax of the
CMA-WSP model ranged from 293 W m–2 to 621 W m–2,
that of the CMA-MESO model ranged from 281 W m–2 to
504 W m–2, that of the CMA-GD model ranged from 327
W m–2 to 607 W m–2, and that of the WRF-SOLAR model
ranged from 314 W m–2 to 669 W m–2. The AEmax exhibited
obvious seasonal variation, with high values in summer
and low values in winter. Although the AEmax of the CMA-
MESO model was the smallest, it could not reflect GHI
fluctuations within an hour and therefore led to a limited
reference since the temporal resolution of this model is
1 hour. The multimodel ensemble facilitated a reduction in
the AEmax to 313–516 W m–2. Moreover, compared with
the monthly optimal numerical model forecasts (except for
the CMA-MESO), the AEmax from January to September
could be reduced by 5.72%–15.90%, while it increased by
2.04%–7.46% from October to December. It should be
emphasized that the multimodel ensemble generated a
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Figure 4. Comparison of the multimodel ensemble and numer-
ical model forecasts at each PV power station. (a) MAE, (b)
RMSE, and (c) R were used for evaluation.
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Figure 5. Comparison of the multimodel ensemble and numer-
ical model forecasts at PV station 4. The AEmax was used for
evaluation.
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positive effect overall.
3.5 Forecast performance under complex weather con-
ditions

The accuracy of GHI forecasts is significantly
affected by weather conditions. On sunny days, the
forecast accuracy is greater, while on cloudy days, due
to the uncertainty in cloud cover, the forecasting difficulty
increases, and the forecast accuracy decreases accordingly
(Da et al. [30]). The forecasts and observations of PV
station 4 from May 8 to 12 and from 21:00 UTC to 12:00
UTC the next day were compared to analyze the
performance of the multimodel ensemble under variable
cloudy weather conditions. Cloud cover observational data
were obtained from the Yangjiang National Meteorological
Station. The comparison results are shown in Fig. 6. From
May 8 to 12, the daytime was mainly cloudy, the cloud
cover fluctuated between 80% and 100%, and the GHI
fluctuation was significant, which led to notable
differences in the magnitude and fluctuation phase
between the numerical model forecasts and observations.
The forecasts of the CMA-WSP and WRF-SOLAR models
were significantly greater than the observations, and the
errors could reach above 500 W m–2 at midday. The
forecasts of the CMA-GD and CMA-MESO models
were lower than the observations, and the variation trend
greatly differed from real situation. Although the forecasts
of the CMA-MESO model were close to the observations,
they could not reflect the refined GHI change due to the
lack of 15-minute forecasts. Therefore, the CMA-MESO
model could only offer a basic reference. Compared with
the numerical model forecasts, the multimodel ensemble
forecasts were closer to the observations and provided a
better performance with regard to GHI fluctuations. On
May 9 and 10, all numerical model forecasts failed to
accurately capture GHI changes, and the multimodel
ensemble achieved the optimal forecast improvement
effect. Although the multimodel ensemble was not the
optimal forecast at every moment, it remained the most
stable and reliable from a long-term perspective.

4 CONCLUSION AND DISCUSSION
With the use of the CMA-WSP, CMA-MESO, CMA-

GD, and WRF-SOLAR model forecasts and GHI
observational data from four PV power stations in
Yangjiang City, Guangdong Province, in 2022, the
dynamic variable weight multimodel ensemble method
was adopted to conduct rolling error correction and
ensemble experiments. The main conclusions are as
follows:

The multimodel ensemble could effectively reduce the
MAE and RMSE of GHI forecasts, but the ensemble
performance varied greatly from month to month.
Compared with those of the monthly optimal numerical
model forecast, the MAE could be reduced by 0.97%–
15.96%, and the RMSE could be reduced by 3.31%–
18.40%. However, improvement in R obtained by the
multimodel ensemble was not obvious, and the values
ranged from only 1.12% to 2.47% in 8 out of 12 months.
From an intensity level evaluation perspective, the
multimodel ensemble provided improved GHI forecasts
below 700 W m–2, and the effect was remarkable,
particularly at GHI levels below 400 W m–2, with a
7.56%–28.28% decrease in the RMSE compared with
that of the optimal numerical model forecast in each month.
On the contrary, at GHI levels greater than 700 W m–2, the
RMSE increased after multimodel ensemble application.

During the key period of the PV power output (02:00
UTC to 07:00 UTC), the multimodel ensemble generated
improved GHI forecast performance. Compared with that
of the optimal numerical model forecast, the RMSE could
be reduced by 33–85 W m–2 in March, May, June, July, and
August, while in January, February, April, September,
November, and December, the decline of RMSE was
slight. Notably, the performance worsened in October. In
general, the effect of the multimodel ensemble forecast
was optimal and remained the most stable.

Regarding the AEmax, for which PV power stations
and power grids have special concerns, the multimodel
ensemble yielded a certain improvement. Compared with
that of the optimal numerical model forecast for each
month, the errors from January to September were reduced
by 5.72%–15.90%, while those from October to December
increased by 2.04%–7.46%. Overall, the multimodel
ensemble provided positive effects. When dealing with
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the forecasting difficulties under cloudy conditions, the
multimodel ensemble had results that were closer to the
observations, and it achieved a better performance
regarding GHI fluctuations.

In this study, the four PV power stations were
modeled separately. However, due to the relatively
uniform underlying surface conditions of the four PV
stations, as well as the small terrain shielding effect, the
advantages of the WRF-SOLAR model were not fully
reflected. The WRF-SOLAR model may have greater
potential for forecasting under complex terrain conditions,
which needs to be tested in other areas. The forecast results
of the four PV power stations after the multimodel
ensemble application improved to various levels. The
forecast error was always the smallest, and the R value was
the greatest, and therefore the multimodel ensemble
exhibited great application potential.

However, the research method of this paper exhibited
several limitations. This method only considered the GHI
while ignoring the influence of other variables, such as
albedo and precipitation. Moreover, the development of
separate models for each PV power station failed to
consider spatial impacts. Furthermore, the length of the
training period was set to 10 days. Some studies have
shown that the length of the training period can impact
multimodel ensemble forecasts and should be investigated
further. Therefore, in subsequent research, further
experiments can be conducted from multiple perspectives
to improve the accuracy of GHI forecasts.
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