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Abstract: In this paper, we utilized the deep convolutional neural network D-LinkNet, a model for semantic segmentation,
to analyze the Himawari-8 satellite data captured from 16 channels at a spatial resolution of 0.5 km, with a focus on the
area over the Yellow Sea and the Bohai Sea (32°–42°N, 117°–127°E). The objective was to develop an algorithm for fusing
and segmenting multi-channel images from geostationary meteorological satellites, specifically for monitoring sea fog in
this region. Firstly, the extreme gradient boosting algorithm was adopted to evaluate the data from the 16 channels of the
Himawari-8 satellite for sea fog detection, and we found that the top three channels in order of importance were channels 3,
4, and 14, which were fused into false color daytime images, while channels 7, 13, and 15 were fused into false color
nighttime images. Secondly, the simple linear iterative super-pixel clustering algorithm was used for the pixel-level
segmentation of false color images, and based on super-pixel blocks, manual sea-fog annotation was performed to obtain
fine-grained annotation labels. The deep convolutional neural network D-LinkNet was built on the ResNet backbone and
the dilated convolutional layers with direct connections were added in the central part to form a string-and-combine
structure with five branches having different depths and receptive fields. Results show that the accuracy rate of fog area
(proportion of detected real fog to detected fog) was 66.5%, the recognition rate of fog zone (proportion of detected real
fog to real fog or cloud cover) was 51.9%, and the detection accuracy rate (proportion of samples detected correctly to total
samples) was 93.2%.
Key words: deep convolutional neural network; satellite images; sea fog detection; multi-channel image fusion
CLC number: P456.1 Document code: A
Citation: HUANG Bin, GAO Shi-bo, YU Run-ling, et al. Monitoring Sea Fog over the Yellow Sea and Bohai Bay Based
on Deep Convolutional Neural Network [J]. Journal of Tropical Meteorology, 2024, 30(3): 223–229, https://doi.org/
10.3724/j.1006-8775.2024.020

1 INTRODUCTION
Sea fog is a type of condensation phenomenon that

occurs in the lower atmosphere over coastal areas, islands,
or sea surface, where a large number of water droplets and
ice crystals suspended in the atmospheric boundary layer
make the atmospheric horizontal visibility less than 1 km
(Gultepe and Milbrandt [1]; Zhang et al. [2]; Lee et al. [3];
He et al. [4]). Notably, sea fog poses a significant threat,
often leading to numerous accidents at sea and in coastal
regions (Xian et al. [5]; Gao and Jiang [6]; Dorman et al. [7];

Fu and Guo [8]; Du et al. [9]). The observations from shore-
based stations often fail to reflect the condition of sea fog
at long distances, making the detection of this
phenomenon a crucial yet challenging aspect in
enhancing the overall capabilities of sea fog forecasting
(Heo et al. [10]; Wang et al. [11]; Miao et al. [12]; Guijo-
Rubio et al. [13]; Park et al. [14]).

The experimental land and sea observation network,
established by the United States Naval Air Systems
Command during 1972–1982, incorporated radiosondes,
ships, aircraft, balloons, and kites for detection (Leipper [15]).
However, ground-based observations do not cover the entire
sea area, and more resource-intensive space-based
observations are needed. Ernst [16] pointed out that
observations from the geostationary satellite GMS-1 can
be used for cloud and fog observation. Based on improved
spatial and temporal coherence methods, Ahn et al. [17] used
the GMS-5 satellite observations with a high temporal
resolution to develop a synthetic map of clear-sky radiation.
They proposed an algorithm for monitoring sea fog using the
infrared channel data from the GMS-5 satellite by
comparing them with hourly infrared radiation
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observations. Eyre et al. [18] and Turner et al. [19] explored the
dual channel difference method based on the difference in
brightness temperature at wavelengths of 10.8 and 3.7 μm to
delineate fog or stratus in terms of optical properties, and
this method was later widely used (Derrien et al. [20]; Luis et
al. [21]; Wang et al. [22]; Xie et al. [23]; Yang et al. [24]). In
contrast to most passive-microwave observations, Wu
et al. [25] used active cloud-aerosol lidar with orthogonal
polarization observations to identify sea fog and evaluated
the results by comparing them with the data from a
moderate-resolution imaging spectroradiometer. Moreover,
Li et al. [26] successfully extracted sea fog information from
the multi-functional transport satellite-1R (MTSAT-1R)
infrared channels using principal component analysis,
texture analysis, and threshold detection (Jun et al. [27]).
Sea fog detection using the optical properties of individual
pixels cannot consider neighboring pixels and is prone to
misidentify clouds as sea fog. Harun-Al-Rashid and Yang
[28] estimated and predicted sea fog motions using the sea fog
region of interest from the images of the geostationary ocean
color imager and simulated wind data based on weather
studies and forecasts. Overall, with the advantages of high
temporal resolution and wide coverage, geostationary
satellite observations can achieve continuous dynamic
observations and become an effective means to monitor
sea fog (Yang et al. [29]; Bai et al. [30]; Yi et al. [31]; Sim et al.
[32]; Xu et al. [33]; Zhu et al. [34]; Li et al. [35]; Jeon et al. [36]).

Recently, deep learning methods, especially semantic
segmentation methods, have been widely applied to
remote sensing inversion and have achieved remarkable
performance. For example, Huang et al. [37] proposed a
two-stage superpixel-based fully convolutional network
(SFCNet) to achieve sea fog detection by learning the
dependencies between pixels. Furthermore, Zhu et al. [38]

attempted to propose a weakly supervised semantic
segmentation method to deal with sea fog recognition
using both satellite images and observational data.

The remainder of this paper is organized as follows.
Section 2 introduces the data and methods used in this
research. Section 3 presents the AI-based sea fog
monitoring model. Section 4 verifies model performance.
Finally, the discussion and main conclusions are shown in
Section 5.

2 DATA AND METHODS
2.1 Data

In this research, we focused on sea fog over the Bohai
Sea and the Yellow Sea, regions prone to frequent
occurrences of such weather events. The data used in
this study were primarily the Himawari-8 half-hourly
standard data. For satellite observation, there were 16
channels, covering the region of 32°–42°N, 117°–127°E,
as shown in Table 1.

This dataset contained two parts, i.e., images and
labels. Each image measured 1024×1024 pixels and
incorporated information from 16 distinct channels. To
ensure consistency, multi-channel data were processed

using linear interpolation, achieving a uniform resolution
of 0.5 km across all channels with varying spatial
resolutions. Color images can be generated by combining
three channels. Similar to Xu et al. [33] and Huang et
al. [37], we utilized the XGBoost algorithm to rank the
correlation features of 16 channels related to sea fog, and
selected the top three channels, namely channels 3, 4, and
14, to compose a false color image of daytime sea fog
detection. Similarly, for nighttime sea fog, the algorithm
selected channels 7, 13, and 15 to form a corresponding
false color image.

Regarding the labels, each label shares the same
dimensions as the corresponding images, measuring
1024×1024 pixels. The sea fog areas were distinctly
labeled as white, while all other regions were designated as
black. Two metrics were used to evaluate the results, i.e.,
the mean intersection over union (mIOU) and the
observation test. When using the metric mIOU, we
randomly divided 201 daytime images with pixel-level
manual labels from 2017 and 2018 into 151 labeled
training images and 50 labeled test images.

When using the other evaluation metric, we employed
a satellite training dataset comprising 201 manually
labeled pixel-level daytime satellite images for training,
spanning the years 2017 and 2018. Additionally, we
incorporated test data consisting of 22 daytime images per
day, captured from March 11 to July 20, 2019, across a
132-day period. All images were acquired during the time
frame of 07:00 to 17:30 Beijing Time (BJT), with only
minor gaps in data, summing up to a total of 2756 images.

We selected the observations from 37 stations in the
Yellow Sea and Bohai Sea regions, including island and
buoy data. The data from sea stations were selected to be
able to intersect with the satellite test data in time and

Table 1. Details of the Himawari-8 dataset.

Channel
serial number

Central
wavelength

Physical
properties

1 0.46 Vegetation, aerosols
2 0.51 Vegetation, aerosols
3 0.64 Low clouds, fog
4 0.86 Vegetation, aerosols
5 1.6 Cloud phase
6 2.3 Particle size
7 3.9 Low clouds, fog, forest fires
8 6.2 Upper middle layer humidity
9 7.0 Middle layer humidity
10 7.3 Upper middle layer humidity
11 8.6 Cloud phase, SO2

12 9.6 Ozone content
13 10.4 Cloud map, genting information

14 11.2 Cloud map, sea surface
temperature

15 12.3 Cloud map, sea surface
temperature

16 13.3 Genting height
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space, with a time interval of three hours and four sets per
day (08:00, 11:00, 14:00, and 17:00 BJT). The
observations from three stations in Qingdao were
complete, and their time interval was one hour. In the
following paragraphs, the 40 stations in the Yellow Sea,
the Bohai Sea, and Qingdao are collectively referred to as
sea stations, and in total, there were 10,559 sets of
observational data, which were not used for modeling but
only to verify the satellite image results.
2.2 AI-based sea-fog monitoring model

Figure 1 is the schematic diagram of the model.
Specifically, the first step was to acquire continuous
geostationary satellite images (GSI) as source data. The
second step was to arrange the above source data in
chronological order to obtain temporal image data, and in
this step, cloud and fog regions or cloud-fog mixture
regions of each image in the source data were extracted by
using color-based image segmentation method to obtain an
initial mask corresponding to each image. In the third step,
the Farneback optical flow method was adopted to
generate an optical flow map of the temporal image data.
In the fourth step, the average optical flow size of each
pixel of the cloud area and fog area was calculated based
on the optical flow map and the initial mask, and the
cloud-fog classification threshold was determined based
on the average optical flow size of the cloud and fog areas
and the GSI data. The fifth step was to perform cloud-fog

classification at each pixel point of the GSI based on the
threshold to obtain automatic identification results of
clouds and fog.
2.3 Model training process

Figure 2 is the schematic diagram of the deep neural
network. In this neural network, the 16-channel data from
the Himawari-8 satellite was first evaluated by using the
extreme gradient boosting algorithm for sea fog detection.
The results indicate that the top three most influential
channels were, in descending order of significance,
channels 3, 4, and 14. The images in these three
channels were fused into a false color image. Then, the
superpixel segmentation of the false color image was
conducted based on the simple linear iterative clustering
superpixel algorithm. According to superpixel blocks,
manual sea-fog annotation was performed to obtain fine-
grained annotation labels. The deep convolutional neural
network D-LinkNet was built on the ResNet backbone,
and in its central part, dilated convolutional layers with
direct connections were added to form a string-and-
combine structure with five branches having different
depths and receptive fields.

Accordingly, we also proposed an automatic cloud-
fog recognition system based on GSI sequences. This
system included an acquisition module for acquiring
continuous-time source data of GSI. Also, the automatic
cloud-fog recognition system included a data pre-

Acquisition of time-continuous geostationary
weather satellite image source data. 

Arrange the geostationary meteorological 
satellite image source data in chronological

order to obtain time-series image data. 

Optical flow map generation of time-series image
data using the Farneback optical flow method.  

Step 1

Step 2

Step 3

Step 4

Step 5

Use color-based image segmentation to extract
the cloud and fog areas or cloud-mixed areas of
each image in the geostationary satellite image

source data, and get the initial mask
corresponding to each image.    

Determine cloud classification thresholds based on
optical flow maps and initial masks to calculate the

average optical flow size for each pixel point in
cloud and fog regions and geostationary

meteorological satellite image source data.   

Cloud classification for each connected domain in
the initial mask of the geostationary meteorological
satellite image source data according to the cloud
classification threshold to obtain automatic cloud

identification results.    

Figure 1. Schematic diagram of the model.
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processing module, which was used to arrange the GSI
source data in chronological order to obtain temporal
image data, and for color-based image segmentation to
extract the cloud and fog areas from each image of
geostationary satellite source data, in order to obtain the
initial mask corresponding to each image. Moreover, this
system included an optical flow algorithm module for
generating an optical flow map of the temporal image data
based on the Farneback optical flow method, as well as a
threshold calculation module. The threshold calculation
module was used to calculate the average optical flow of
each pixel point of the cloud and fog regions based on the
optical flow map and the initial mask to determine the
cloud-fog classification threshold. Additionally, a
classification module was also included in this system,
which was used to classify clouds and fog according to the
above cloud-fog classification threshold in each connected
domain of the initial mask of GSI source data. In this way,
the automatic cloud recognition results can be obtained.

3 RESULTS
3.1 Evaluation metrics of the model

The mIOU and the observation test were selected as
the evaluation metrics of the semantic segmentation results.

The mIOU is a standard metric for measuring semantic
segmentation, which can be described as the ratio of the
intersection of two sets to the union. In the semantic
segmentation, these two sets are the actual values and the
predicted values. The mIOU can be expressed as Eq. 1:

kmIOU = 1
+ 1

TP
TP + FN + FP (1)

i

k

=0

where TP indicates the true and positive values, FN the
false and negative values, and FP the false and positive
values. The mIOU is the result of summing and then
averaging the intersection over union (IOUs) for each set,
where the IOU indicates the ratio of the agreement
between the predicted values and the actual values. The
mIOU can be rewritten as Eq. 2:
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where i represents the true values, j the predicted values,
and pij the prediction of i into j.

The observation test, which compares the obtained
satellite test data with the observations of sea stations, uses
the accuracy rate of fog area, the recognition rate of fog
area and the detection accuracy rate as evaluation metrics,
as expressed in Eqs. 3–5:
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+
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total

where mf indicates fog data observed by the offshore
observatory, sf indicates fog data detected by our method,
m n indicates no-fog data observed by the offshore
observatory, sn indicates no-fog data detected by our
method, cc indicates dense impermeable medium-high
cloud cover, n total is the number of all observed samples,
Pa indicates the accuracy rate of fog area, Pr indicates the
recognition rate of fog area and Da indicates the detection
accuracy rate. The recognition rate of fog area does not
have statistical cloud coverage because it is based on
images and is difficult to recognize.
3.2 Model results

A sea fog recognition model based on the D-LinkNet
deep convolutional neural network was used to test the
satellite data test set. The training and test sets were 151
and 50 daytime sea fog images from 2017 to 2018,
respectively, and the mIOU was used as an evaluation
metric for the semantic segmentation results. The mIOU
on the test set was 0.9436. The test data results of the
trained model were compared with the results of the sea
observations, which were tested from March 11, 2019 to

Multi-channel
satellite data 

SST and other
model data 

Image feature extraction

Numerical feature extraction
Integration

characteristics 

Classification
model 

Softmax

Pixel-level classification model

Figure 2. Schematic diagram of the deep neural network.
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July 20, 2019, with a total of 10,559 observations from 40
observation stations.

The satellite test data results and the offshore
observational data results were counted. According to the
formulae for the accuracy rate of fog area, the recognition
rate of fog area and the detection accuracy rate in Section
3.1 of this paper, the accuracy rate of fog area (proportion
of detected real fog to detected fog) was calculated to be
66.5%, the recognition rate of fog area (proportion of
detected real fog to real fog or cloud cover) was 51.9%,
and the detection accuracy rate (proportion of samples
detected correctly to total samples) was 93.2%. The final
data are recorded in Table 2.
3.3 Case results

We selected two cases of the artificial intelligence
(AI) sea fog inversion recognition at 14:00 BJT on April 6,
2022 (daytime) and 04:00 BJT on April 7, 2022
(nighttime) for case test, as shown in Fig. 3 and Fig. 4.
The false color images on the left were generated by fusing
data from channels 3, 4, and 14.

As shown in Fig. 3, the left column is the Himawari-8
satellite cloud image, and the right column is the AI sea
fog inversion recognition at the same time. As can be seen,
the deep-learning-based image fusion segmentation
algorithm can better and more accurately inverse the
pattern of sea fog over the southern Yellow Sea. Fig. 4
shows that the algorithm also has a good inversion
recognition effect for night fog, and also has a good
recognition effect for the sea fog area in the central–
eastern part of the Yellow Sea and the southern Yellow Sea
on April 7, 2022.

In summary, whether for the overall test from March
to July 2019 or for individual cases, the geostationary
satellite multi-channel image fusion segmentation
algorithm based on deep learning had better results for
the recognition of sea fog in the Yellow and Bohai Sea by
using the D-LinkNet deep convolutional neural network
semantic segmentation algorithm model. This paper
proposed an AI-based sea fog recognition system, which
automatically recognized cloud and fog through
acquisition module, data pre-processing module, optical
flow algorithm module, threshold calculation module, and
classification module. It was based on the optical flow
algorithm, and the difference in timing information
between fog and other meteorological phenomena can
significantly reduce the interference of similar
meteorological phenomena on cloud and fog
differentiation, which effectively improves the accuracy
of cloud and fog recognition. Overall, the algorithm does

not need too much modification when recognizing clouds
and fog in different time and location. The difference in
motion of clouds and fog is universal, so it has high
universality.

4 RESULTS
This paper proposed a deep learning-based multi-

channel image fusion segmentation algorithm for
geostationary meteorological satellites, using the D-
LinkNet deep convolutional neural network semantic
segmentation algorithm model for 16 channels of
Himawari-8 satellite data with a spatial resolution of
0.5 km in the Yellow and Bohai Sea area (32°–42°N,
117°–127°E). The training and test sets were derived from
151 and 50 daytime sea fog images from 2017 to 2018, and
the mIOU was used as an evaluation metric for the
semantic segmentation results, with a mIOU of 0.9436 on
the test set. The results of the trained model were
compared with that of sea observations. The testing
period was from March 11, 2019 to July 20, 2019, with
a total of 10,559 observations from 40 observation
stations. The accuracy rate of fog area (proportion of
detected real fog to detected fog) was calculated to be
66.5%, the recognition rate of fog area (proportion of
detected real fog to real fog or cloud cover) was 51.9%,
and the detection accuracy rate (proportion of samples
detected correctly to total samples) was 93.2%.

5 DISCUSSION AND CONCLUSION
The main conclusions of this paper are as follows.

The system used an optical flow algorithm to recognize
clouds and fog based on time-continuous GSI source data.
It is found that the use of the difference between fog and
other meteorological phenomena timing information can
obviously reduce the interference of similar
meteorological phenomena (especially stratus) on cloud
and fog distinction.

However, the theory of interpretability of deep
learning methods has not yet been well developed, and
the recognition of sea fog did not correspond to the
evolutionary mechanism of sea fog. If the interpretability
of deep learning in sea fog monitoring can be enhanced
and corresponded with the physical mechanism of sea fog,
fostering a deeper integration between meteorology and
artificial intelligence, we are confident that AI technology
could yield superior recognition outcomes in sea fog
monitoring and contribute to a deeper understanding of the
mechanisms behind the formation and dissipation of sea
fog.

Table 2. Comparison of the satellite test data results with those from sea observations.

Data Sea observation
with fog

Sea observation
without fog

Fog area
accuracy

Fog area
recognition rate

Detection
correct rate

Satellite with fog 393 198 / / /
Satellite without fog 522 9446 66.5% 51.9% 93.2%
Cloud coverage 158 / / / /
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