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Abstract: Concurrent extreme weather events in geographically distant areas potentially cause high-end risks for societies.
By using network analysis, the present study managed to identify significant nearly-simultaneous occurrences of heatwaves
between the grid cells in East Asia and Eastern Europe, even though they are geographically far away from each other. By
further composite analysis, this study revealed that hot events first occurred in Eastern Europe, typically with a time lag of
3–4 days before the East Asian heatwave events. An eastward propagating atmospheric wave train, known as the circum-
global teleconnection (CGT) pattern, bridged the sequent occurrences of extreme events in these two remote regions.
Atmospheric blockings, amplified by surface warming over Eastern Europe, not only enhanced local heat extremes but also
excited a CGT-like pattern characterized by alternative anomalies of high and low pressures. Subsequent downstream
anticyclones in the middle and upper troposphere reduced local cloud cover and increased downward solar radiation,
thereby facilitating the formation of heatwaves over East Asia. Nearly half of East Asian heatwave events were preceded
by Eastern European heatwave events in the 10-day time range before East Asian heatwave events. This investigation of
heatwave teleconnection in the two distant regions exhibits strong potential to improve the prediction accuracy of East
Asian heatwaves.
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1 INTRODUCTION
Heatwaves, identified as an extended period of

anomalously high temperatures (Fischer and Schär [1];
Perkins and Alexander [2]), potentially exert overwhelming
impacts on human societies and ecosystems (Westerling et
al. [3]; Thornton et al. [4]; Meng et al. [5]; Rübbelke and
Vögele [6]; Coumou and Rahmstorf [7]; Lesk et al. [8]). For
example, the devastating hot summer of 2003 caused
around 40,000 heat-related deaths and sizable agricultural
production losses across Europe (Fouillet et al. [9]; García-
Herrera et al. [10]; Laaidi et al. [11]). This was not

occasional, and European extreme hot events recurred in
2010 (Barriopedro et al. [12]; Dole et al. [13]), 2015 (Russo
et al. [14]; Duchez et al. [15]), and 2022 (Wang et
al. [16]). Another example in Southwest China in 2022
featured extreme heatwaves associated with droughts and
wildfires, brought about rippling socioeconomic and
environmental impacts, including drinking water
shortage, agricultural loss, electricity crunch and human
health risk (Chen et al. [17]). On a global scale, heat
extremes draw world-wide concerns, since both their
intensity and frequency show increasing trends in the
recent warming decades (Perkins et al. [18]; Coumou and
Rahmstorf [7]; Mazdiyasni and AghaKouchak [19]; Perkins
and Lewis [20]; Rousi et al. [21]) and are expected to
increase continuously in the future roasting climate (Meehl
and Tebaldi [22]; Coumou and Robinson [23]; Christidis et
al. [24]; King and Harrington [25]; Zhang et al. [26]).

Compared with a single extreme weather event,
compound or multiple events have recently sparked
stronger scientific interests because amplified societal
impacts are often observed for such concurrent extremes
(Zscheischler and Seneviratne [27]; Sarhadi et al. [28]).
Several studies have revealed that recurring concurrences
of climate extremes are not in coincidence, including
extreme rainfall synchronization (Boers et al. [29–31]; Gupta
et al. [32]; Su et al. [33]), heatwave-flood teleconnection
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(Lau and Kim [34]; Capua et al. [35]), compound drought and
heatwave events (Mazdiyasni and AghaKouchak [19]; Li et
al. [36]; Mukherjee and Mishra [37]), and concurrent heat
extremes along the mid-latitude westerly jet streams in the
Northern Hemisphere (Kornhuber et al. [38, 39]). Kornhuber
et al. [39] indicated that heat extremes over Eastern Europe
and East Asia occurred nearly simultaneously and were
associated with the recurrent Rossby wave pattern with
wave number 5. A congruous result was concluded by
Yang et al. [40], despite the fact that lead-lag information on
the occurrences of distant heatwaves was not discussed
thoroughly in these studies. In addition, the days of
European and East Asian summer heatwaves vary
consistently on interannual time scales, for which the sea
surface temperature anomaly in the Atlantic Ocean is a
common driver (Zhou and Wu [41]; Deng et al. [42]).

However, the lead-lag relationship between the
occurrences of European and East Asian heatwaves on
synoptic time scales is still unclear. Which happens first
compared with the other? What is the time lag between
their occurrences? How are they bridged between the two
distant regions? This study aims to clarify the lead-lag
concurrences of heat extremes over Eurasia and the
responsible physical mechanisms for heatwave
teleconnection. Section 2 describes the datasets and
methods used in this study. The results obtained are
illustrated in section 3, followed by a summary and
discussion in section 4.

2 DATA AND METHODS
We adopt the ERA5 reanalysis dataset (Hersbach et

al. [43]) in this study. Hourly data on surface and ten
pressure levels (1000, 925, 850, 700, 600, 500, 400, 300,
200, 100 hPa), with a horizontal resolution of 1.0°×1.0°,
are averaged into daily means preparatory for further
composite analysis. There are a total of 3956 days in our
analysis period, June–July–August (JJA) of 1979–2021.
Physical variables, including 2-m temperature (T2m), total
cloud cover (TCC), solar radiation, multilevel atmospheric
temperature, geopotential height, zonal wind and
meridional wind, are analyzed in this study.

Heatwave day on a 1.0°×1.0° grid cell in land areas is
identified when daily T2m exceeds its 90th percentile
threshold for at least three consecutive days, as in previous
studies (Fischer and Schär [1]; Perkins and Alexander [2]).
The 90th percentile threshold on each date is calculated
from a total of 43 years × 15 days (7 days on either side of
the target day). For instance, the threshold value on June
15 equals the 90th percentile of T2m from June 8 to June
22 during 1979–2021 (645 days).

To explore the concurrences of heatwaves over
different regions, we apply a network analysis in this
study. The strength of a link between grid cells a and b is
defined as the concurrent days, when heatwaves occur
simultaneously over grid cells a and b. We shuffle the
daily heatwaves (absence as 0 or presence as 1) time series
1000 times for each grid cell, and then calculate the 99th

threshold of link strengths for each pair of grid cells a b( , )
from the shuffled data. When the real strength of a link is
lower than the 99th threshold, this link is identified as
nonsignificant and will be removed. Furthermore, the
degree strength is identified as the weighted sum of
the link strengths, and each link is weighted by

( )cos (latitude + latitude / 2)a b . In particular, the degree
strength of a grid cell inside East Asia (D EA) is the
weighted sum of the links between this grid cell and grid
cells in East Asia (Fig. 1a). Similarly, the degree strength
D EE is the weighted sum of link strengths inside Eastern
Europe (Fig. 1b).

Regional heatwave days are identified when the
number of heatwave grid cells in this region is higher than
a certain value. In particular, about 10% (401 days) of the
3956 summer days are recognized as East Asian heatwave
events when heatwaves occur in no less than 80 grid cells
over 20°–45°N, 100°–125°E. The first day of each East
Asian heatwave event is denoted as A0. The days after A0
are symbolized as A1 (i.e., A0 + 1 day), A2, A3, …, while
the days before A0 are signified as B1 (i.e., A0 –1 day),
B2, B3, …, etc. Similarly, Eastern European heatwave
events are identified when heatwaves occur in no less than
130 grid cells over 50°–70°N, 15°–50°E, so that about
10% (398 days) of the summer days are selected as the
Eastern European heatwave days.

To further investigate the development of East Asian
surface warming and related physical processes, we
conduct a composite analysis. There are three categories:
A0–A1, B1–B2, and B3–B4. Category A0–A1 includes
days A0 and A1, but those days A1 without the
occurrences of East Asian heatwave events are excluded.
Moreover, categories B1–B2 and B3–B4 include days that
are two days and four days before the days in category
A0–A1, respectively. Furthermore, days of June 1 to June
4 in categories A0–A1 are excluded so that days in
categories B1–B2 and B3–B4 are still within the range
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Figure 1. Degree strengths (units: 103) inside (a) East Asia
(D EA), and (b) Eastern Europe (D EE). D EA (D EE) over a grid cell
is the summed strengths of all significant links between this grid
cell and the grid cells in East Asia (Eastern Europe). The strength
of a link between grid cells a and b is identified by counting the
concurrent days without delay when heatwaves occur over both
grid cells a and b. The domains of East Asia (20°–45°N, 100°–
125°E) and Eastern Europe (50°–70°N, 15°–50°E) are denoted
by the blue box in (a) and green box in (b), respectively.
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from June to August. There are 155 days in each category.
Composite anomalies are the differences between the
average physical variables in each category (155 days) and
the climatology (3956 days). Student’s t-test is used to test
whether composite anomalies are significant, which are
provided by the NCL function “ttest” (https://www.ncl.
ucar.edu/Document/Functions/Built-in/ttest.shtml).

To investigate the wave packets related to Eurasian
heatwaves, an empirical orthogonal function (EOF)
analysis is performed for the yearly anomalies of
meridional wind at 200 hPa (V200) during JJA of 1979–

2021. Following previous studies (Yasui and Watanabe [44];
Cen et al. [45]), a circum-global teleconnection (CGT)
pattern is identified as the first leading mode of V200 over
20°–60°N, 0°–150°E (Fig. 2a), since its major
characteristic is observed near the Asian jet stream. The
EOF approach is provided by the NCL function “eofunc”
(https://www.ncl.ucar.edu/Document/Functions/Built-in/
eofunc.shtml).

Furthermore, the propagation of atmospheric Rossby
waves can be described by the wave activity flux (Takaya
and Nakamura [46]), which can be written as follows:
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where p = pressure (per 1000 hPa), while , , aand are
latitude, longitude, and earth radius, respectively.
Moreover,  represents the anomaly of the stream
function, while U , u, and v indicate the climatology of
the wind speed, zonal wind, and meridional wind,
respectively.

3 CONCURRENT HEATWAVES OVER EAST-
ERN EUROPE AND EAST ASIA

Figure 1 shows the degree strengths inside East Asia
(D EA) and Eastern Europe (D EE). High degree strengths
indicate high simultaneous occurrences of heatwave days
with East Asian heatwaves or Eastern European
heatwaves. In addition to local synchronisation, East
Asian heatwaves usually occur simultaneously with the
heat extremes over Eastern Europe, the Middle East, and
Southern North America (Fig. 1a). It is noticeable that the
highest degree strengths D EA are over Eastern Europe.
Therefore, degree strengths inside Eastern Europe
heatwaves (D EE) are investigated further. Consistently,
East Asian heatwaves are found to be highly synchronized
with Eastern European heatwaves (Fig. 1b). Meanwhile,
the heat extremes over the Middle East, Northeast Asia,
and Southern North America are also correlated to the
Eastern European heatwaves (Fig. 1b), implying strong
links of heatwaves among these regions. However,
investigating the details of extreme event teleconnection
around the globe is beyond the scope of this article. In the
following, we will focus on the remarkable simultaneous
occurrences of heatwaves over Eastern Europe and East
Asia.

To further analyze the lead-lag details of the nearly-
simultaneous remote heatwaves over Eurasia, we conduct
a composite analysis for East Asian heatwave events. The
differences in T2m and atmospheric circulations between
the climatology and the days in the categories A0–A1, B1–
B2, and B3–B4 for East Asian heatwaves are shown in
Fig. 3. For East Asia, T2m experiences a rapid increase
before the onset of East Asian heatwaves (Figs. 3a, 3c, and

3e). The sudden surface warming over East Asia could be
attributed to the formation of anticyclonic circulation
anomalies in the middle- and upper-troposphere over East
Asia (Figs. 3b, 3d, and 3f; Figs. 6b, 6e, and 6h). On the one
hand, the anticyclone-related subsidence causes adiabatic
heating in the entire troposphere (Figs. 4d and 4f). On the
other hand, the reduction of total cloud cover and the
increase in downward solar radiation also favor abrupt
atmospheric heating near the surface (Figs. 3b, 3d, and 3f).
For Eastern Europe, similar processes are involved,
including anticyclonic circulation anomalies, enhanced
adiabatic heating, less cloud cover, and more downward
solar radiation (Fig. 3; Figs. 4a, and 4c).

It should be noted that the near-surface warming over
Eastern Europe occurs about 2–4 days ahead of that over
East Asia (Figs. 3a, 3c, and 3e). To exhibit the lead-lag
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Figure 2. (a) Circum-global teleconnection pattern represented
by the leading EOF mode of meridional wind at 200 hPa (V200)
over 20°–60°N, 0°–150°E. The EOF result is calculated from the
JJA mean (yearly) fields from 1979 to 2021, which are obtained
from the ERA5 dataset. (b) Composite anomalies of V200
(shadings; units: m s–1) for the category A0–A1 of East Asian
heatwave events from the climatology. The contours in (b) de-
notes the statistically significant composite differences (p = 0.05
and p = 0.01). The blue box in (b) indicates the area of East Asia
(20°–45°N, 100°–125°E). The pattern correlation between (a)
and (b) is 0.61, significant at the 99.9% confidence level.
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Figure 3. Composite anomalies of (a, c, e) air temperature at 2 m (shadings; units: K), and (b, d, f) total cloud cover (shadings; units: %).
The anomalies of atmospheric circulation (colored vectors; units: m s–1) at 850 hPa and 500 hPa are also shown in (a, c, e) and (b, d, f),
respectively. Composite anomalies are the averaged differences between the climatology and days in a certain category. (e, f) are the
differences between climatology and the category A0–A1 of East Asian heatwaves, while (c, d) and (a, b) are for category B1–B2 and
B3–B4, respectively. Only the statistically significant values at the 95% confidence level are plotted. The red stippling in (b, d, f) denotes
significant positive deviations of downward solar radiation from climatology (p<0.05). The blue boxes in (a, c, e) denote the areas of
Eastern Europe (50°–70°N, 15°–50°E) and East Asia (20°–45°N, 100°–125°E).
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coexistences of heatwaves over the two distant regions
clearly, the composite anomalies of both T2m and
geopotential height at 500 hPa (H500) are plotted in
Fig. 5 for the Eastern European and East Asian heatwaves.
H500 is analyzed here because surface heatwaves are
often related to the middle tropospheric high-pressure
center (Deng et al. [47, 48]). This way, we find that after a
short period of rapid intensification, the surface warm
center and middle-tropospheric high-pressure center
usually reach their peaks on the second day (A1) of
regional heatwave events (Fig. 5). In all four composite
plots of T2m and H500, the East Asian and Eastern
European peaks (i.e., highest composite anomalies) are
significantly deviated from the climatology. Obviously,
East Asian peaks are preceded by the Eastern European
peaks, with a time lag of 3–4 days, indicating evident
nearly simultaneous happenings between heat extremes
over these two regions. In particular, on the sixth day (B6)
before the occurrences of East Asian heatwaves, no
significant East Asian T2m and H500 are observed (Figs.
5a and 5b). By contrast, significant positive anomalies of
Eastern European T2m and H500 from the climatology
(p<0.01) are observed (Figs. 5a and 5b) on the B6 before
East Asian heatwaves. In the following several days,
sudden atmospheric warming occurred over East Asia
accompanying with the occurrences of East Asian
heatwaves (Fig. 5a). In summary, notable significant
positive anomalies of Eastern European T2m and
H500 from the climatology (p<0.01) are observed in
nearly a week ahead of the sudden atmospheric warming
over East Asia (Figs. 5a and 5b), which is potentially
helpful for predicting the occurrences of East Asian
heatwaves.

4 PHYSICAL MECHANISM FOR THE TELE-
CONNECTION OF HEAT EXTREME

Extreme weather events over distant regions could be
connected by upper-tropospheric Rossby waves (Boers et
al. [31]; Kornhuber et al. [39]). To clarify the physical causes
associated with the lead-lag linkage between European and
East Asian heatwaves on synoptic scales, we analyze the
composite fields of atmospheric circulation, stream function,
and wave flux activity at 300 hPa (Figs. 6a, 6b, 6d, 6e, 6g,
and 6h). An eastward-propagating wave train, with
alternative anticyclonic and cyclonic circulation anomalies,
is observed over the Eurasian continent (Figs. 6a, 6d, and
6g). An anomalous upper-tropospheric anticyclone first
appears over Eastern Europe, corresponding to the
appearance of Eastern European heatwaves (Fig. 6b).
Subsequently, an anomalous cyclone emerges over central
Russia (Fig. 6e), accompanied with near-surface cooling
(Figs. 3c and 3e). Four days later, another anomalous
anticyclone appears over East Asia when heatwaves happen
over the southeastern part of the Eurasian continent (Fig. 6h).

Such an eastward-propagating anticyclone-cyclone-
anticyclone circulation pattern seems to be triggered by
heatwave-related tropospheric warming over Eastern
Europe (Fig. 6). Cen et al. [45] indicated that the
tropospheric atmospheric heating over Eastern Europe
could enhance an eastward propagating wave train
resembling the CGT pattern. Formulated on an EOF
analysis of yearly summertime V200 according to a
previous study (Yasui and Watanabe [44]), the CGT
pattern is identified as four alternative anomalies of
upper-tropospheric northerlies and southerlies over
Eurasia (Fig. 2a), which is mostly similar to the
regression pattern of V200 onto another CGT index (Fig.
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2a in Zhou et al. [49]; Ding and Wang [50]). Reasonably, the
heatwave-related wave train in this study seems to be a
part of the CGT-like pattern (Lu et al. [51]; Ding and Wang
[50]; Yasui and Watanabe [44]; Wang et al. [52]), as the pattern
correlation coefficient between the composite V200
anomalies for category A0–A1 of Asian heatwaves and
CGT-related V200 is up to 0.61 (Figs. 2a and 2b), which is
significant at the 99.9% confidence level.

In particular, the upper-tropospheric high-pressure
center and anticyclonic circulation anomalies are amplified
by the sudden near-surface atmospheric warming over
Eastern Europe, corresponding to the appearance of
Eastern European heatwaves (Figs. 6a, 6c, 6d, and 6f).
In the subsequent days, wave energy propagates toward
the downstream regions and another anomalous
anticyclone is excited over East Asia to stimulate the
incidence of East Asian heatwaves (Fig. 3e; Figs. 6g and
6h).

5 SUMMARY AND DISCUSSION
This study investigates the lead-lag occurrences of

European and East Asian heatwaves on synoptic timescale.
Based on network analysis and composite analysis, a
significant event synchronization with a time delay of 3–4
days is uncovered between the near-surface atmospheric
temperature extremes over Eastern Europe and East Asia.
Although the teleconnections of heat extremes have
received attention, the lead-lag details and the potential
predictability on synoptic time scale have not been

investigated clearly in previous studies (Deng et al. [42];
Kornhuber et al. [39]; Yang et al. [40]). About 3–4 days
before the appearance of East Asian heatwaves, Eastern
European heatwaves occur, accompanied by an intensified
tropospheric anomalous anticyclone. A Rossby wave train,
as a part of a CGT-like pattern, is triggered and propagates
eastward, with alternative anomalies of high and low
pressures over the Eurasian continent. Subsequently,
another middle- and upper-tropospheric anomalous
anticyclone in the downstream region causes sudden
surface warming over East Asia as a result of both
enhanced subsidence-related adiabatic heating and
increased downward solar radiation due to reduced cloud
cover. Thus, the eastward propagating wave train plays a
vital role in linking the teleconnection of heat extremes
over the Eurasian continent. Quantificationally, 43 % of
East Asian heatwave events are preceded by Eastern
European heatwave events in the 10-day time range before
East Asian heatwave events. The investigation of
heatwave teleconnection in the two remotes regions has
strong potential to improve the prediction skill of East
Asian heatwaves.

The standard deviations (σ) of East Asian and Eastern
European daily T2m are 2.07 K and 1.57 K, respectively.
It is noted that a pronounced surface warming anomaly
over Eastern Europe (~ 1.45 K = 0.7 , p < 0.01) is
observed before the East Asian heatwaves (Fig. 5a). By
contrast, the East Asian surface warming anomaly is
weaker (~ 0.55 K = 0.35 , 0.01 < p < 0.05) after the
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Figure 6. Composite anomalies of (a, d, g) stream function (shadings; units: 106 m2 s–1) and wave activity flux (vectors; units: m2 s–2) at
300 hPa, and (b, e, h) meridional wind (shadings; units: m s–1) and atmospheric circulation (vectors; units: m s–1) at 300 hPa. (c, f, i) are
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Eastern European heatwaves (Fig. 5c). The asymmetrical
connection of heat extremes over the two distant regions
deserves further investigations. Furthermore, a similar
wave train is observed related to the springtime East Asian
heatwaves (Zhang et al. [53]), emphasizing the significance
of investigating the extreme event teleconnection in the
transitional season. Moreover, East Asian heatwaves are
also influenced by tropical forcings, such as the Pacific-
Japan teleconnection pattern (Xu et al. [54]) and the Indian
Ocean heat source (Gao et al. [55]), which deserves more
awareness, especially under the large impacts of
significant changes in the atmospheric convection over
the western Pacific Ocean (Chen et al. [56]; Lin et al. [57]).
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