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Abstract: The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height, at a rate
of 5.98 m yr–1 during the cold season, which further contributes to the transition from snowfall to rainfall patterns. Between
1979 and 2020, there has been a decrease in snowfall in the Yellow River Basin at a rate of –3.03 mm dec–1, while rainfall
has been increasing at a rate of 1.00 mm dec–1. Consequently, the snowfall-to-rainfall ratio (SRR) has decreased. Snowfall
directly replenishes terrestrial water storage (TWS) in solid form until it melts, while rainfall is rapidly lost through runoff
and evaporation, in addition to infiltrating underground or remaining on the surface. Therefore, the decreasing SRR
accelerates the depletion of water resources. According to the surface water balance equation, the reduction in precipitation
and runoff, along with an increase in evaporation, results in a decrease in TWS during the cold season within the Yellow
River Basin. In addition to climate change, human activities, considering the region’s dense population and extensive
agricultural land, also accelerate the decline of TWS. Notably, irrigation accounts for the largest proportion of water
withdrawals in the Yellow River Basin (71.8%) and primarily occurs during the warm season (especially from June to
August). The impact of human activities and climate change on the water cycle requires further in-depth research.
Key words: terrestrial water storage; melting level height; surface water balance; human activities; Yellow River
Basin
CLC number: P40 Document code: A
Citation: ZENG Xin-rui, GUAN Xiao-dan, CHEN Han, et al. Changes of Terrestrial Water Storage in the Yellow River
Basin Under Global Warming [J]. Journal of Tropical Meteorology, 2024, 30(2): 132–148, https://doi.org/10.3724/j.1006-
8775.2024.013

1 INTRODUCTION
The Yellow River, an essential water supply source in

North China (Xu [1]), is the second longest river in China.
The Yellow River Basin, spanning 795,000 km2, connects
the Qinghai-Tibet Plateau, the Loess Plateau and the North
China Plain. With over 12% of the national cultivated land
area and water consumption, this region plays a vital role in
ensuring food and water security (Jing et al. [2]; Li et al. [3]).
However, as most of the Yellow River Basin is located in
arid and semi-arid regions (Huang et al. [4]), its total water
resources are limited and unevenly distributed over time
and space. Consequently, the per capita water resource
availability in the basin is significantly lower than the
global average (Chen et al. [5]).

With global warming, the temperature in the Yellow
River Basin is rising rapidly (Fu et al. [6]), and the local
water cycle processes are being affected (Yin et al. [7];
Zhao et al. [8]; Ziegler et al. [9]). Over the past 30 years, the

Yellow River has been witnessing a trend of drying up due
to decreased precipitation and increased evaporation (Yang
et al. [10]; Zhou and Huang [11]). Meanwhile, human
activities have exacerbated water scarcity in the region (Li
et al. [12]; Wang et al. [13]). These factors not only limit
agricultural production and damage the ecological
environment but also hinder the sustainable development
of the social economy (Chen et al. [14]; Xu et al. [15]).
Therefore, it is of great practical importance to rationally
assess the water resource status of the Yellow River Basin.

In the hydrological cycle, terrestrial water storage
(TWS) is a sensitive variable that refers to the cumulative
volume of a series of continental water stored in the ground,
canopy, glaciers, rivers, lakes, and soil (Xie et al. [16]; Xu et
al. [17]). Serving as a comprehensive indicator of regional
water content, it plays an important role in assessing the
health of local ecosystems and determining the availability
of water resources (Wang et al. [18]). At the same time, it is
intrinsically linked to drought events and terrestrial carbon
deposition (Pokhrel et al. [19]; Humphrey et al. [20]). The
Gravity Recovery and Climate Experiment (GRACE)
program provides data support for the accurate
assessment of global and regional TWS. For example,
Xu et al. [21] found a decrease in TWS in the southeastern
Tibetan Plateau, northern and northwestern China, and an
increase in TWS in northeastern, western, and southern
China based on GRACE data. An et al. [22] used GRACE
data in conjunction with the water balance equation to
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attribute the decrease in TWS in the drylands of northern
China. As a typical climate change sensitive region, the
TWS changes in the Yellow River Basin have received
extensive attention from experts over the past decade.
GRACE data suggest that TWS in the Yellow River Basin
shows a declining trend, with its spatial distribution
characterized by a slow increase in the source area and a
rapid decrease in the non-source areas (Meng et al. [23]; Lv
et al. [24]). In addition, the spatial weighted centroid
analysis method has revealed an increasing disparity in
TWS between the upstream and downstream regions of the
Yellow River Basin (Jing et al. [2]). The significant
decrease in TWS implies a disruption in the region’s water
balance, where the output water (e.g., evapotranspiration,
runoff, and human water use) exceeds the input water (e.g.,
precipitation), thereby exacerbating local water stress.

It has been shown that the change of TWS in the
Yellow River Basin is influenced by both human activities
and climate change. In terms of human activities, the
increase in urbanization rate and total population has led to
an increase in industrial and domestic water usage.
Additionally, due to the basin’s extensive agricultural
croplands, irrigation is the primary anthropogenic factor
causing groundwater reduction (Li et al. [25]; Lin et al. [26];
Zhang et al. [27]). Lv et al. [24] found that irrigation
activities and the Grain for Green project have increased
evapotranspiration, consequently contributing to a
decrease in terrestrial water storage change. Moreover,
reservoir operations significantly impact localized TWS
changes (Dong et al. [28]; Liu et al. [29]; Xie et al. [30]). In
terms of climate change, the TWS are impacted by
precipitation, evaporation and runoff according to the
surface water balance equation. Zhang et al. [31] found that
the decrease in precipitation is an important factor
contributing to the reduction in TWS, and decreasing
runoff also plays an important role in water scarcity (Xu [1];
Wang et al. [32]).

Previous studies have primarily focused on the effects
of various factors on the annual changes of TWS. Given
that precipitation, evaporation, and runoff exhibit seasonal
cycles (Ji et al. [33]; Wu et al. [34]; Zhang et al. [31]), and
since irrigation water use predominantly occurs from May
to August (Wang et al. [35]), these factors might have
seasonally varying impacts on TWS changes. Moreover,
with the presence of both solid and liquid forms of
precipitation during the cold season, it is not clear whether
the change of precipitation phase indirectly affects the
TWS in the Yellow River Basin. The change of the
Melting Level Height (MLH) plays a crucial role in this
change of precipitation phase state, which represents the
zero-degree wet bulb temperature at the surface. This
parameter is important for cloud processes and
precipitation phasing because ice particles start to melt at
this height (Dessens et al. [36]; Wang et al. [35]). According
to Prein and Heymsfield [37], the global terrestrial MLH
has increased at a rate of 32 m dec–1 with global warming.
This rising MLH leads to a change in the precipitation

phase (more snowfall to rainfall) and affects the
hydrological cycle. Therefore, it is necessary to explore
the impacts of climate change and human activities on
cold-season TWS, and the impacts of MLH changes on
hydrological processes. Section 2 introduces the datasets
and study area. In section 3, we discuss the changes in
TWS and the factors influencing them, including the
effects of climate change on cold-season TWS and the
impact of human activities on water resources. The
conclusion and discussion are given in section 4.

2 DATA AND METHODOLOGY
2.1 Datasets
2.1.1 SATELLITE DATASET

The terrestrial water storage anomaly (TWSA) data in
this study were obtained from the GRACE mission. This
mission consists of a binary satellite system and was
launched by the American National Aeronautics and Space
Administration (NASA) and the German Aerospace
Center (Frappart and Ramillien [38]; Tapley et al. [39]).
Hydrological information, including high-accuracy maps
of Earth’s time-variable gravity field, is produced by
measuring the change in distance between satellites (Jacob
et al. [40]; Syed et al. [41]; Tapley et al. [42]). Mass
concentration blocks (mascons), estimating gravitational
fields with priori constraints in space and time, are the
latest schemes with fewer measurement errors (Wang et
al. [35]; Watkins et al. [43]). We selected data from the
Center for Space Research (CSR) of the University of
Texas RL06 Mascon Solutions (version 02), the Jet
Propulsion Laboratory (JPL-M) and the Goddard Space
Flight Center (GSFC-M). The monthly TWSA data were
available from January 2003 to December 2016, and the
spatial resolution was uniformly interpolated to 0.25°.
Because these datasets exhibit similar trends (Fig. 1), we
used the ensemble mean as the TWS for the Yellow River
Basin.
2.1.2 REANALYSIS DATASETS

The fifth-generation reanalysis global atmosphere
(ERA5), produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF), has replaced the
ERA-Interim reanalysis because of its improved resolution
and the availability of more output parameters such as
hourly output throughout (Hersbach et al. [44]). This
reanalysis product combines vast amounts of historical
observational data with advanced numerical weather
models (Bell et al. [45]). It provides a wide range of
spatially and temporally resolved meteorological
parameters, such as precipitation, temperature, humidity,
and pressure at various levels. The inputs to ERA5 come
from various sources, including weather stations, satellites,
radar, and ocean buoys. It is worth noting that errors may
occur during the data assimilation process (Shen et al. [46]).
In previous research, ERA5 has been used to examine
climate change in the Yellow River Basin (Pang et al. [47];
Tian et al. [48]).

Based on the water balance model, the variation in

No.2 ZENG Xin-rui (曾昕瑞), GUAN Xiao-dan (管晓丹), et al. 133



TWS (terrestrial water storage changes, TWSC) equals
the precipitation minus evaporation and runoff (Rodell et
al. [49]). Because precipitation includes rainfall and
snowfall, the equation can be written as follows:

E RTWSC = Rainfall + Snowfall + Res (1)
where E represents evaporation, R represents runoff, and
Res represents the residual term, including irrigation and
other water management transfers.

The monthly 2 m temperature, snowfall, total
precipitation, runoff and evaporation from the ERA5
reanalysis dataset are used to analyze changes in climate
factors during 1979–2021. The spatial resolution of the
data is 0.25°, and the rainfall in the study is derived from
total precipitation minus snowfall.
2.1.3 MELTING LEVEL HEIGHT

The MLH is defined as the zero-degree wet bulb
temperature above the surface (Prein and Heymsfield [37]),
and its variation has an effect on the precipitation phase

change. Since it is challenging to obtain MLH data
directly, this study uses the method proposed by Wang et
al. [35] to calculate the MLH by interpolation using 137
model levels in the vertical direction of ERA5 (Please refer
to the Appendix for more details). The wet-bulb
temperature (Tw) is calculated from air temperature and
specific humidity (Prein and Heymsfield [37]; Knox et al. [50]),
which are obtained from hourly reanalysis output for
ERA5 model levels.
2.1.4 POPULATION DENSITY

Population density data was obtained from WorldPop
(https://www.worldpop.org/), which provides data in units
of people per square kilometer. We selected the data from
2003 to 2014 and calculated the average population
density in the Yellow River Basin during this period.
2.2 Hydrological model

To investigate human water use in the Yellow River
Basin, we utilized data from WaterGAP v2.2d. WaterGAP
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Figure 1. The time series of the monthly TWS anomalies during 2003–2016 from (a) CSR, (c) GSFC, and (e) JPL datasets. The trend
distribution of the TWSA from (b) CSR, (d) GSFC, and (f) JPL datasets. The dotted areas represent regions with a confidence level
exceeding 95%.
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is a global hydrological model that quantifies water
abstraction and use by different sectors of humanity
(Schmied et al. [51]). Previous studies have indicated that
the latest version of the WaterGAP 2.2d model exhibits
reasonable performance in simulating key variables such
as TWS and human water abstraction (Müller et al. [51]).
Therefore, it is used for studying water storage and human
water usage (An et al. [52]; Li et al. [53]). We selected data
on potential water withdrawals and potential consumptive
water use for four sectors: irrigation, industrial, domestic,
and livestock, spanning from 2003 to 2016. There are two
simulation scenarios in the model: “histoc”, which
considers both human activities and natural factors, and
“nosoc”, which considers only natural factors. We
calculated the evapotranspiration attributed to human
activities by taking the difference between the
evapotranspiration data from the standard model and the
natural model.
2.3 Study area

The Yellow River Basin spans an area of
795,000 km2, linking the Qinghai-Tibet Plateau, the
Loess Plateau, and the North China Plain. Since the
Yellow River Basin covers multiple geographical units, it
is divided into source and non-source regions (Fig. 2). The
source area is defined as the region where the Yellow
River Basin and the Tibetan Plateau overlap, while the rest
of the region is a non-source area. Additionally, we have
selected six sub-regions based on the distribution of the
major irrigation districts within the Yellow River Basin

(Peng et al. [54]), as indicated in Table 1.
2.4 ERA5 data applicability analysis

To reduce uncertainty in our analysis, we compared
the precipitation in the ERA5 data with the monthly
precipitation data from the GPCC Full Data Monthly
Version 2022, published by the Global Precipitation
Climatology Centre (GPCC). GPCC data is an
observation-based global precipitation dataset, which
contains precipitation information from more than 85,000
observation stations worldwide (Schneider et al. [55, 56]) and
is known for its high accuracy. It has played an important
role in studying precipitation changes in the Yellow River
Basin (Wang and Wang [57]; Huang et al. [58]).
Additionally, we compared the precipitation, snowfall,
evapotranspiration, and runoff data from ERA5 with the
Japan Meteorological Agency’s JRA-55 reanalysis dataset.
The JRA-55 dataset is suitable for studying climate factor
changes in the Yellow River Basin (Miao and Wang [59]).

According to Table 2, the correlation coefficients of
precipitation between ERA5 and GPCC/JRA-55 reached
0.977. Additionally, the correlation coefficients of rainfall,
snowfall, evapotranspiration, and runoff between ERA5
and JRA-55 were 0.980, 0.819, 0.985, and 0.864,
respectively. All these values passed the significance
test. Therefore, ERA5 data can be used to study the
changing characteristics of climate factors in the Yellow
River Basin.

Before using ERA5 data to analyze the effects of each
climatic factor on TWS, it is necessary to demonstrate that

Yellow River Basin
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Figure 2. The Yellow River Basin. Orange area is the source area, blue area is the non-source area, and the purple solid line encircles the
major irrigation districts within the Yellow River Basin.

Table 1. Location of the major irrigation districts.

District Location Population density (units: people km–2)
A 35.5°N–37.25°N, 101°E–105°E 161
B 37.5°N–40°N, 106°E–107°E 218
C 40.25°N–41.25°N, 106.5°E–112°E 145
D 36.5°N–38°N, 111.5°E–113°E 541
E 34°N–36°N, 107°E–112°E 364
F Downstream of the Yellow River Basin 697
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the GRACE dataset is consistent with the TWSA derived
from the ERA5 reanalysis data (Lei et al. [60]; Velicogna et
al. [61]). According to the correlation analysis (Fig. 3), the
correlation coefficients between observed and simulated
values were greater than 0.9 for all months except for July
and August, where they still reached substantial levels of
0.83 and 0.87, respectively. Furthermore, a high correlation
was observed in the TWSA time series (0.915), and the
yearly trends were similar (–0.46 Gt mon–1 for GRACE-
TWSA and –0.47 Gt mon–1 for the simulated TWSA).

3 RESULTS
The TWSA in the Yellow River Basin showed an

overall declining trend at a rate of –5.580 Gt yr–1, which was
consistent with prior research (Lv et al. [24]; Li et al. [62]).
However, in terms of spatial distribution, an opposite trend
of TWSA occurred, with a slight increase in the source
area and a notable decrease in the non-source area (Fig.
4a). Comparing the time series of TWSA between the cold
season (October to April of the following year) and the
warm season (May to September), it became evident that
the TWSA in the cold season decreased at a rate of –6.799
Gt yr–1 (Fig. 4b). This decline was more significant than
that observed during the warm season (–5.316 Gt yr–1) and
over the entire year.

In the cold season, the TWS was replenished by
precipitation, while runoff and evaporation were discharge
processes (Xu [1]; Wang et al. [35]). From 1979 to 2020, the
evaporation in the Yellow River Basin increased during the
cold season (1.01 mm dec–1), while runoff significantly
decreased at a rate of –3.47 mm dec–1 (Fig. 5). The latter
might be caused by a decrease in precipitation and an
increase in evaporation and irrigation, as indicated by
previous studies (Yang et al. [10]; Chen et al. [63]). As a

primary source of replenishment, the decline in
precipitation in the Yellow River Basin (–2.03 mm dec–1)
was one of the reasons for the reduction in cold-season
TWS. Due to the presence of both snowfall and rainfall
during the cold season (Fig. 6), we separately analyzed
their trends. As temperatures continued to rise, the general
trends in snowfall and rainfall within the Yellow River
Basin differed. From 1979 to 2020, snowfall during the
cold season decreased at a rate of –3.03 mm dec–1, while
rainfall exhibited a slight increase (Fig. 7).

To better understand their relationship, the snowfall-
to-rainfall ratio (SRR, the calculation formula is in the
supplement) was explored. This ratio has gained growing
scientific interest recently, as it has the potential to impact
surface albedo changes and the timing of spring runoff
(Berghuijs et al. [64]; Liu et al. [65]; Screen et al. [66]; Wang
et al. [67]). The higher the SRR, the larger the proportion of
snowfall compared to rainfall. The SRR during the cold
season decreased at a rate of –0.048 dec–1 (Fig. 8). This
trend was observed across most of the basin’s areas,
especially near the source region.

Since the Yellow River Basin spans several
geomorphic units, the trend of the TWSA and its
influencing factors vary in spatial distribution. Therefore,
the Yellow River Basin is divided into source and non-
source parts. According to Fig. 4c, the TWSA in the non-
source area of the Yellow River decreased rapidly at a rate
of –6.987 Gt yr–1, while in the source area, there was a
slight increase. In both the source area and non-source
area, runoff was rapidly declining and exhibited the
highest partial correlation coefficients with TWSA
(Table 3). At the same time, snowfall decreased in both
subregions while rainfall increased. In the source area,
rainfall was rapidly increasing at a rate of 3.04 mm dec–1,
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Table 2. Correlation coefficients between ERA5 data and GPCC and JRA-55 data in the Yellow River Basin.

Correlation
coefficient

GPCC
precipitation

JRA-55
precipitation

JRA-55
rainfall

JRA-55
snowfall

JRA-55
evaporation

JRA-55
runoff

ERA5 0.977*** 0.977*** 0.980*** 0.819*** 0.985*** 0.864***

***Statistically significant at the confidence level of 99%
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while snowfall was decreasing at a rate of –1.09 mm dec–1.
In the non-source area, rainfall was increasing slowly,
while snowfall was rapidly decreasing at a rate of
–3.65 mm dec–1. Snowfall and rainfall had different
mechanisms for replenishing TWS. Snowfall directly
replenished TWS in solid form until it melted, thereby
slowing down the decline of TWS during this period. In
contrast, rainfall was rapidly lost through runoff and
evaporation, in addition to infiltrating underground or
remaining on the surface (Wang et al. [35]). Therefore, the
rising rainfall and declining snowfall exacerbated the
scarcity of water resources.

To investigate their temporal impact on TWS, the
study period was divided into two parts: 2003–2008 and
2009–2015. In source areas and non-source areas, the
partial correlation coefficient of rainfall with TWSA
increased over time, indicating that the effect of rainfall
became more significant, which may be associated with an

increase in MLH. According to Fig. 9, the MLH increased
during the cold season, especially in the source area. The
average MLH in the Yellow River Basin increased at a rate
of 5.977 m yr–1 and exhibited a strong positive correlation
(correlation coefficient of 0.849) with the rising near-
surface temperature. This suggests that the MLH in the
Yellow River Basin was primarily driven by warming.
Prein and Heymsfield [37] found that, with global warming,
the increase in MLH resulted in decreasing snow and
increasing rain events. In our study, the MLH was
positively correlated with rainfall and negatively
correlated with SRR. In the non-source area, a one-meter
increase in MLH corresponded to a 0.07 mm increase in
rainfall (Fig. 10). This indicates that during the cold
season, more precipitation in the Yellow River Basin
experienced a phase change from snowfall to rainfall.

Due to the large population in the Yellow River
Basin, human activities have a notable impact on its water

(a) Trend of Monthly SRR (b) Cold-season SRR
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Figure 8. (a) Monthly trends of the averaged SRR in the Yellow River Basin during the period of 1979–2020. (b) Time series of the
average SRR in the cold season. (c) Spatial distribution of SRR trends during the cold season; dotted areas are those with a confidence
level exceeding 95%.

Table 3. Partial correlation coefficients between snowfall, rainfall, runoff, evapotranspiration and TWSA in the source and non-source
areas of the Yellow River during the cold season.

Region Time Snowfall Rainfall Runoff Evaporation

Source area
2003–2015 –0.46 0.36 0.74** –0.48
2003–2008 0.26 0.44 0.86 –0.29
2009–2015 –0.52 0.60 0.46 0.67

Non-source area
2003–2015 0.47 –0.74** 0.90*** 0.43
2003–2008 0.84 0.25 0.923 –0.56
2009–2015 0.86 –0.88 0.94* 0.44

***Statistically significant at the confidence level of 99% **Statistically significant at the confidence level of 95% *Statistically significant at the
confidence level of 90%
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resources (Miao et al. [68]; Wang et al. [69]). WaterGAP
2.2d categorizes human water usage into four sectors:
irrigation, domestic, industrial, and livestock. By
comparing the potential water withdrawal and potential
consumptive water use across various sectors of human
activity, we observed similar spatial distribution (Fig. 11–
12). Irrigation water use was primarily concentrated in
various irrigation zones within the Yellow River Basin,
and household water use followed a distribution similar to
population density. The water withdrawals and
consumption of each sector were increasing (Table 4),
which resulted in elevated regional evapotranspiration
(Fig. 13) and, consequently, a higher outflow of regional
water resources. However, when considering monthly total
water withdrawals and consumption, we found that human
water usage was primarily concentrated during the warm
season, particularly from June to August. As a result, the
impact of human activities on cold-season water resources
was relatively limited.

Among all water sectors, irrigation occupied the
largest proportion in potential water withdrawals and
potential consumptive water use (Fig. 14), accounting for
71.8% and 83.7%, respectively, followed by industrial
water use (20.8% and 13.1%, respectively). Six subregions
were chosen based on the distribution of irrigation areas
within the Yellow River Basin. Except for Region C,
where the Inner Mongolia Yellow River Irrigation Area
was located, the population density in the remaining
subregions was higher than that in the Yellow River Basin
(Table 1). Among all the subregions, Region C had the
highest irrigation water withdrawals and consumptive
water use (9.44 Gt and 5.07 Gt), followed by Regions F
and E. Regions E and F, situated in the middle and lower
reaches of the Yellow River Basin, demonstrated high
water usage across various sectors.

However, during the cold season, the spatial
distribution of human water use in the Yellow River
Basin notably diverges from the annual pattern (Figs. 15b
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and 15c). The distribution of total water use is more
similar to that of industrial water use and is mainly
concentrated in the middle and lower reaches of the
Yellow River Basin, as well as in densely populated cities
of the upper reaches, such as Lanzhou, Xining, Yinchuan,

and Hohhot. This distribution reflects the dominance of
industrial water use during the cold season, where
industrial water withdrawal and consumptive use account
for over 60% of the total. Although human water use in
the cold season is lower compared to the warm season,

mm m−1 mm m−1p p

p p

pp− −

Figure 10. The scatter distribution and correlation between MLH and rainfall in the (a) source area and (b) non-source area. The scatter
distribution and correlation between MLH and SRR in the (a) source area and (d) non-source area.

(e) Irrigation (f) Industrial

(g) Domestic

42°N

40°N

38°N

36°N

34°N

95°E

5 10 20 30 40 50 60 70 80 90 10025 50 75 100 125 150 175200 225 250 275 300

100°E 105°E 110°E 115°E 120°E 95°E 100°E 105°E 110°E 115°E 120°E

32°N

42°N

40°N

38°N

36°N

34°N

32°N

42°N

40°N

38°N

36°N

34°N

32°N

42°N

40°N

38°N

36°N

34°N

32°N

95°E

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 0.2 0.5 1 1.5 2 2.5 3 3.5 4 4.5

100°E 105°E 110°E 115°E 120°E 95°E 100°E 105°E 110°E 115°E 120°E

units: kg m−2 units: kg m−2

(h) Livestock units: kg m−2units: kg m−2
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with average total withdrawal and consumptive use of
13.16 Gt and 3.56 Gt, respectively, it’s important to note
that water usage in the cold season is also on an increasing
trend (Fig. 15a).

4 DISCUSSION AND CONCLUSION
TWS is the sum of continental water, and its change

plays an essential role in investigating the sustainability of
water resources. For the entire Yellow River Basin, the
decline in TWSA during the cold season can be attributed
to reduced precipitation (–2.03 mm dec–1) and runoff
(–3.47 mm dec–1), along with an increase in evaporation
(1.01 mm dec–1). Furthermore, due to rising temperatures,
the MLH increased significantly at a rate of 5.98 m yr–1.
This change has led to more precipitation to transition
from snowfall to rainfall patterns. Snowfall directly
replenishes TWS in its solid state until it melts during
the warm season, whereas rainfall can quickly dissipate
through runoff, evaporation, or other methods.
Consequently, the increase in MLH exacerbates water
resource scarcity and stress (Fig. 16). This phenomenon is
also observed in the non-source areas of the Yellow River
Basin.

However, in the source areas of the Yellow River
Basin, the increase in TWS is also influenced by additional
mechanisms. Because of global warming, glaciers on the
Tibetan Plateau are melting, causing a rise in lake levels
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2003 to 2016.

Table 4. Potential water withdrawal and usage by each sector.

Human activities Trend (Gt dec–1)
Potential irrigation consumptive water use 1.442
Potential irrigation water withdrawals 2.897

Potential industrial consumptive water use 1.916*

Potential industrial water withdrawals 5.096*

Potential domestic consumptive water use 0.026*

Potential domestic water withdrawals 0.253*

Potential livestock consumptive water use 0.050*

*Statistically significant at the confidence level of 99%
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(Rodell et al. [49]; Long et al. [70]; Zhang et al. [71]). The
TWS was complemented by the expansion of lakes in the
Yellow River’s source area. Moreover, since the source

area is situated in the transition zone between perennial
permafrost and seasonal permafrost, the degradation of
permafrost resulting from warming also played an
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important role in the rising TWS (Meng et al. [23]; Qin et
al. [72]).

Additionally, due to the large population and extensive
agricultural land in the Yellow River Basin, human activities
such as agricultural irrigation, industrial production, and
reservoir construction also had a significant impact on TWS
(Dong et al. [28]; Jiang et al. [73]; Lv et al. [74]). In this study,
human activities were categorized into four sectors:
irrigation, industry, household, and livestock. The annual
water consumption in each sector was increasing, which
exacerbated the issue of water scarcity. However, because
irrigation water withdrawal and consumptive water use
constituted 71.8% and 83.7% of the total, and irrigation
primarily occurred during the warm season, human
activities had a limited impact on cold-season water
resources.
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Appendix

THE CALCULATION OF THE MELTING LEVEL
HEIGHT

The melting layer height refers to the height of the
zero-degree wet bulb temperature, calculated using the
method of Wang et al. [35]. The wet bulb temperature can
be derived as (Ding et al. [75]):

T T e T

P e T
T

( ) = (1 RH ) × ( )

0.000643 × + ( ) (1)w k k
K k

K
k
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where T( )w k is the wet bulb temperature, Tk represents

temperature, and RHK is relative humidity. e T( )ksat is the

saturated vapor pressure at Tk (Murray [76]). The “k”
represents the k-layer atmosphere. The full level pressure
(k level) is the average of the pressures of two half-layer
atmospheres (Pk = (Pk+1/2 + Pk–1/2)/2), and the half-layer
pressure is defined as:

P a b= + sp (3)K k k+1/2 +1/2 +1/2

where sp is the surface pressure. ak+1/2 and bk+1/2 are

coefficients obtained from the ECMWF website. The
geopotential height is calculated as (Wang et al. [35]):

R T
P
P= + × ( ) × ln (4)k s j k d v j

j

j+1/2 = +1
137 +1/2

1/2

where s represents the geopotential height at the Earth’s

surface, Tv is the virtual temperature and Rd represents the
gas constant for dry air.

Coefficients in Eq. 3 and half-level pressure are
obtained from the ECMWF website (https://www.ecmwf.
int/en/forecasts/documentation-and-support/137-model-
levels).

THE CALCULATION OF THE SNOWFALL-TO-
RAINFALL RATIO

SRR = Snowfall
Rainfall × 100%
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