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Correction of CMPAS Precipitation Products over Complex Terrain
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Abstract: Machine learning models were used to improve the accuracy of China Meteorological Administration
Multisource Precipitation Analysis System (CMPAS) in complex terrain areas by combining rain gauge precipitation
with topographic factors like altitude, slope, slope direction, slope variability, surface roughness, and meteorological
factors like temperature and wind speed. The results of the correction demonstrated that the ensemble learning method
has a considerably corrective effect and the three methods (Random Forest, AdaBoost, and Bagging) adopted in the study
had similar results. The mean bias between CMPAS and 85% of automatic weather stations has dropped by more than
30%. The plateau region displays the largest accuracy increase, the winter season shows the greatest error reduction, and
decreasing precipitation improves the correction outcome. Additionally, the heavy precipitation process’precision has
improved to some degree. For individual stations, the revised CMPAS error fluctuation range is significantly reduced.
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1 INTRODUCTION

A crucial part of weather forecasting, disaster
prevention, and mitigation is the use of high-resolution,
high-quality precipitation data (Harrison et al. [1]; Turk et
al. [2]). These data can be evaluated to help develop more
accurate high-resolution numerical weather prediction
models (Lagasio et al. [3]), and monitor small - and
medium-scale extreme precipitation events and the
resulting flash floods, landslides, and mudslides
(Hirabayashi et al. [4]; Nikolopoulos et al. [5]).

The criteria for the resolution and accuracy of
precipitation products have improved with the growth of
weather predictions and services (Shen et al. [6]; Hong et
al. [7]; Huffman et al. [8]). The National Meteorological
Information Center (NMIC) first established a baseline
using precipitation data from automatic weather stations,

then corrected the systematic bias of the radar and
satellite precipitation products using the Probability
Density Function (PDF) matching method (Simolo et
al. [9]; Chen and Kumar [10]), and finally combined the
radar and satellite precipitation products using the
Bayesian Model Averaging method (Pan et al. [11]) to
create a comprehensive and ideal joint precipitation
background for the Chinese region. The spatial structure
information of the estimated precipitation from the 1-km
radar is further downscaled (Shen et al. [12]). Next, the
combined satellite-radar precipitation products were
utilized independently as a background to quantify the
error estimates using statistical methods before being
fused into rain gauge observations using Optimal
Interpolation methods (Pan et al. [13]; Shen et al. [14]).

The NMIC used the above four methods (Pan et
al. [15]) to create a three-source (gauge, satellite, and
radar) fused precipitation product with spatial / temporal
resolutions of 1 km h-1. In China, this fused product is
known as the China Meteorological Administration
Multisource Precipitation Analysis System (CMPAS)
(Shi et al. [16]; Pan et al. [17]), and it fully utilizes single-
source precipitation products to create a complete and
superior precipitation product. In addition, the NMIC
has developed High Resolution China Meteorological
Administration Land Data Assimilation System
(HRCLDAS) (Han et al. [18]; Tie et al. [19]), which
includes air temperature, 10-m wind, and specific
humidity, with a spatial resolution of 1 km and a
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temporal resolution of 1 hour.
In complicated terrain areas, the temporal and

spatial pattern of precipitation is quite complex,
especially in plateau areas with sparse weather stations
where there is a considerable disparity between CMPAS
and rain gauge data (Li et al. [20]; Wu et al. [21]). Much
research has revealed that the accuracy of the already
regularly utilized precipitation fusion data still needs to
be improved (Pang et al. [22]; Bai et al. [23]; Guo et
al. [24]). Some studies revised precipitation products
using a statistical calculation method based on
precipitation occurrence and development patterns, and
Yu et al. [25] improved the applicability of precipitation
products in China by PDF method, but the revisions’
accuracy is poor in the complex topography of western
China. Topography (Wang et al. [26]), vegetation (Jia et
al. [27]; Liu et al. [28]), and meteorological characteristics
(Beuchat et al. [29]) including temperature and wind
speed were used to improve it, and precipitation
products for the Tibetan Plateau region were updated
using the KNN algorithm (Huang et al. [30]; Yang et
al. [31]). The findings were superior to the updated
precipitation products using the PDF approach. Chen et
al. [32] used different machine learning models to revise
precipitation products, which are commonly used in the
Chinese region, demonstrating that machine learning
methods have significant revision effects on
precipitation products.

Based on this, this research proposes a machine
learning strategy to improve the CMPAS products’
accuracy in locations with complicated terrain.
Topographic features like altitude, slope, slope direction,
slope variability, and surface roughness are extracted
from high-precision Digital Elevation Model (DEM)
data as topographic factors. These topographic factors
are combined with precipitation-related temperature and
wind speed as meteorological factors to pick the optimal
model to revise the CMPAS products, and the revision
effect is evaluated.

2 DATA AND METHODS

2.1 Study area
Sichuan province, China is selected for the study. In

terms of topography, Sichuan is the most complex
province in China, which is located in the southwestern
part of the country, with high terrain in the west and low
terrain in the east, sloping from northwest to southeast
(Xie and Wang [33]; Lu et al. [34]). The altitude difference
between the highest and lowest points in Sichuan is
more than 7300 m, and the terrain is quite undulating
(Huang et al. [35]).

Meteorologically, Sichuan is generally divided into
three regions for analysis: the Western Sichuan Plateau,
the Sichuan Basin (central and eastern Sichuan), and
Panxi Area (southwestern Sichuan) (Luo et al. [36]; Zeng
et al. [37]). The Western Sichuan Plateau is located on the
east side of the Qinghai-Tibet Plateau, with an average

altitude of more than 4000 m (Zhang [38]). The Sichuan
Basin, the central region of thr province, has a total of
17 cities and is typically at 500 m or lower altitudes
(Chen and Xie [39]). With an average altitude of 1300 m,
the Panxi Area is a part of the Yunnan-Guizhou Plateau
(Li et al. [40]).
2.2 Data

The CMPAS product is the subject of this revision,
and the participants are the HRCLDAS temperature and
wind speed products, DEM data, and automatic weather
stations data. The study used the data from October
2020, January 2021, April 2021, and July 2021,
representing the four seasons of autumn, winter, spring,
and summer, respectively. The heavy precipitation
process from June 12 to 13, 2021 is selected for the case
study, and the hydrological station data from July 2021
is chosen for an independent analysis.

The CMPAS and HRCLDAS datasets are provided
by the NMIC, CMA (China Meteorological
Administration), with a resolution of 0.01° × 0.01°
(original resolution: 1 km), and again the temporal
resolution is hourly. China Meteorological
Administration Multisource Precipitation Analysis
System_Real Time (CMPAS_RT) from the CMPAS
product is selected for the study, and CMPAS_RT is a
real-time radar-satellite-gauge merged precipitation
product.

The hourly surface precipitation, temperature, and
wind speed data are collected from 1899 national
automatic weather stations and regional automatic
weather stations in Sichuan province, provided by the
CMA and Sichuan Meteorological Service.

Topographic factors such as slope, slope direction,
slope variability, and surface roughness of the
CMAPS_RT grid points and all weather stations were
extracted from the 90-m resolution DEM data released
by the NMIC.

Hourly precipitation data of hydrological stations
were from real-time shared data with Sichuan Provincial
Water Resources Departments. Through the
collaborative quality control of adjacent meteorological
stations and radar products, 449 stations were selected to
participate in the independent evaluation.
2.3 Analysis methods

Through nearest-interpolation, meteorological
stations and CMPAS grids were spatially matched. Wu
et al. [21] demonstrated that the nearest-interpolation
approach produces better results for CMPAS evaluation,
and since precipitation was local and dispersive, the
nearest-interpolation was selected. And the errors of
station precipitation and grid precipitation were
calculated, BIAS, Mean Bias (MB), Root Mean Square
Error (RMSE), Relative Error (RE), and Correlation
Coefficient (COR) are the primary evaluation metrics.
The MB reflects the average deviation of the grid values
from the observed values, the RMSE reflects the degree
of dispersion of the data, the RE reflects the accuracy of
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the grid values, and the COR shows the degree of
correlation between the grid and observed values. The
BIAS, MB, RMSE, RE, and COR are calculated as

BIAS = Gi - Oi (1)

MB =
1

N∑i = 1

N ( )Gi - Oi , (2)

RMSE =
1

N∑i = 1

N ( )Gi - Oi

2
, (3)

RE =
1

N∑i = 1

N ||Gi - Oi

Oi

(4)

COR =
∑i = 1

N ( )Gi -
-
G ( )Oi -

-
O

∑
i = 1

N

( )Gi -
-
G

2 ∑
i = 1

N

( )Oi -
-
O

2 (5)

where Oi is the station observation value, Gi is the value
obtained by interpolating the CMPAS products to
stations and N is the total number of samples (number of
stations).

The traditional score is based on the classification
of observations and CMPAS_RT, as shown in Table 1.

Table 1. Precipitation dichotomy.

Type

CMPAS_RT TRUE

CMPAS_RT FALSE

OBSERVATIONS
TRUE

NA

NC

OBSERVATIONS
FALSE

NB

ND

The Threat Score (TS), Probability of Detection
(POD), Missing Alarm Rate (MR), and False Alarm Rate
(FAR) are calculated as:

TS =
NA

NA + NB + NC
(6)

POD =
NA

NA + NC
(7)

MR =
NC

NA + NC
(8)

FAR =
NB

NA + NB
(9)

2.4 Construction of the revised model
2.4.1 DATA PREPROCESSING

The BIAS between the CMPAS_RT product and
the station rain gauge data is used as the target value to
participate in the machine learning correction.

As meteorological factors, temperature and wind
speed are taken into consideration. Slope, slope
variability, slope direction, and surface roughness
extracted from the DEM data are topographic factors.
Assume that there are i sets of variables associated with
precipitation, and each set of variables has j factors, the

meteorological and topographic factors are standardized
(Chen et al. [32]) as

yij = xij -
-xj

Sj
(10)

where yij is the standardized factor value, xij is the
original factor,

-xj is the arithmetic mean of the jth factor,
and Sj is the sample standard deviation.

All the standardized impact factors are divided into
several independent principal components using
Principal Component Analysis (Abdi and Williams [41];
Lasisi and Attoh-Okine [42]). The implementation of
Principal Component Analysis in this study is based on
the‘scikit-learn’of python language, and the main
principles are as follows:

First, the contribution of the principal components
to the precipitation results is calculated. Then, by
computing the loadings between the impact factors and
the principal components, the contribution of the impact
factors to the precipitation results is analyzed. Finally,
the principal components with a cumulative contribution
of 90% are selected for the machine learning revision.
2.4.2 MODEL TRAINING AND VALIDATION

Parametric experiments on machine learning
models are conducted using grid search (Bergstra and
Bengio [43]) and k-fold cross-validation (Refaeilzadeh et
al. [44]) methods. The grid search algorithm is a method
to optimize model performance by traversing a given
combination of parameters. The accuracy of each model
for the test set is assessed for each pair of parameters,
and the accuracy of each pair of parameters is compared
through k-fold cross-validation to select the optimal
parameters.

The whole training set data is averaged into k
pieces. The remaining k−1 parts are used as the cross-
validation training set, while the kth part is used as the
validation set. The model is trained using the data set of
k cases to produce k models under the current parameter
settings, and the corresponding validation set is used to
examine the prediction results of these k models to
produce k correctness indicators, which are then
averaged as the corresponding scores. The optimal
parameters of the model are determined by scores.
2.5 Machine learning methods

Following the results of the experiments, three
ensemble learning methods (Sagi and Rokach [45]) are
chosen for revision. By establishing several models,
ensemble learning solves the single prediction problem.
Its working principle is to generate multiple classifiers
or models that can independently learn and predict
(Dong et al. [46]). These forecasts are eventually grouped
into a combined forecast, which is superior to
forecasting in any single category.
2.5.1 RANDOM FOREST REGRESSION

Random forests (Belgiu and Drǎgut [47]) are used to
resample multiple samples from the original sample and
model a decision tree for each sample, and then average
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the predicted values of the multiple decision trees to
obtain the final prediction results. First, the dataset is
created by:

D = { }( )xm, ym ,m = 1, 2…,n (11)

where ym is the bias between the value interpolated to
the station for the CMPAS and the station rain gauge
data, and xm is the principal component.

The training dataset Dj is then drawn at random
from a subset of the dataset. A random forest is created
by repeatedly training N decision trees hi, each of which
is built using a random subspace partitioning approach,
from which the best features are chosen for splitting.
The average of each decision tree represents the
projected outcome.
2.5.2 ADABOOST REGRESSION

AdaBoost (Cao et al. [48]; Rätsch et al. [49]) is an
abbreviation for ‘Adaptive Boosting’. AdaBoost
regression algorithm can be briefly described in three
steps：

First, initialize weights. For dataset D (Eq. 8), if
there are n samples, the weight for each sample xm is
initialized to 1/n. D1 is used for the training of the first
weak learner h1 and Dt is used for the training of the tth
weak learner ht.

Second, repeat the loop T times, recording the
number of weak learners in each iteration as t, t =1, 2, 3,…,T. The weight distribution of the sample set xt
is changed after calculating the error rate of the learner
ht and updating the learner's current weight following
the error size. In this approach, the entire training

procedure is iterated.
Third, based on the learners' weight rankings after

T rounds of iterations, the median weight learner is
chosen as the outcome.
2.5.3 BAGGING REGRESSION

The Bootstrap aggregating, also known as the
Bagging algorithm (Bauer and Kohavi [50]), serves as the
foundation for more sophisticated algorithms like
Random Forest. Data are put-back extracted from the
original dataset D (Eq. 8). To get t Bootstrap resampling
datasets, this is repeated t times. A weak learner is then
obtained for each Bootstrap resampled dataset for a total
of t weak learners for regression. The final result is
calculated by integrating the t weak learners and taking
the mean of these t weak learners.

3 RESULTS AND DISCUSSION

3.1 Analysis of overall revision effect
The overall evaluation scores before and after the

revision are displayed in Table 2. The original TS score
is 0.91, POD is 0.952, MR is 0.048, and FAR is 0.047,
indicating that the model’s precipitation accuracy is
already high. The three machine learning algorithms’
revised outcomes are comparable, with revised TS
scores of 0.94, POD of 0.984, MR of 0.016, and FAR of
0.046. All indicators have improved to varying degrees,
with the most notable decrease of 66% in MR.

The hourly precipitation is subdivided by class, and
Table 3 shows that as the amount of precipitation rises,
the RMSE also goes up. All of the revised RMSE
decreased, with the Random Forest Regression revisions
being the most successful in doing so for each class.

3.2 Analysis of different stations
Rain gauge precipitation from 1899 automatic

weather stations across Sichuan is statistically evaluated
with CMPAS_RT and the revised products from three

methods. Figs. 1-4 depict the spatial distribution of the
indicators. The distribution of the number of stations for
each indicator before and after the revision is also
counted (Fig. 5).

Product

CMPAS_RT

Random Forest Regression

AdaBoost Regression

Bagging Regression

TS

0.910

0.940

0.941

0.941

POD

0.952

0.984

0.984

0.984

MR

0.048

0.016

0.016

0.016

FAR

0.047

0.046

0.045

0.046

Product

CMPAS_RT

Random Forest Regression

AdaBoost Regression

Bagging Regression

Precipitation (mm h-1)

0.1-1.9

0.284

0.274

0.277

0.281

2-4.9

0.846

0.828

0.834

0.833

5-9.9

1.614

1.597

1.614

1.605

10-19.9

3.463

3.414

3.420

3.456

≥20

6.495

6.239

6.275

6.299

Table 3. RMSE of different precipitation levels for CMPAS_RT and revised products.

Table 2. TS, POD, MR, and FAR for CMPAS_RT and revised products.
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The overall revised results are similar for all three
methods. In terms of MB, it is mainly concentrated in
the range of -0.01−0.01mm h-1 in CMPAS_RT, with 980
stations having an MB of less than 0 mm h-1, indicating
that CMPAS_RT underestimates precipitation for most
stations. The three methods greatly minimize the MB
between the products and stations. Following the
adjustment, the MB of roughly 800 stations is -0.005−0

mm h-1, and that of nearly 600 stations is 0−0.005 mm
h-1. The number of stations with MB between -0.01 mm
h-1 and 0.01 mm h-1 is reduced by about 30%. In
overview, 95% of the stations are revised to reduce MB,
and 85% of the stations reduce MB by more than 30%.

For the RMSE, the stations with a large RMSE in
CMPAS_RT are mostly concentrated in the basin, with
the RMSE of 939 stations concentrated in the range of

Figure 4. COR distribution of CMPAS_RT and revised products from each station (a: CMPAS_RT; b: Random Forest Regression; c:
AdaBoost Regression; d: Bagging Regression).
(Source of map: Sichuan Bureau of Surveying, Mapping and Geoinformation. Map approval number: Chuan S[2021]00059, http://
scsm.mnr.gov.cn/nbzdt.htm)
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Figure 1. MB distribution of CMPAS_RT and revised products from each station (a: CMPAS_RT; b: Random Forest Regression; c:
AdaBoost Regression; d: Bagging Regression).

Figure 2. RMSE distribution of CMPAS_RT and revised products from each station (a: CMPAS_RT; b: Random Forest Regression;
c: AdaBoost Regression; d: Bagging Regression).

Figure 3. RE distribution of CMPAS_RT and revised products from each station. (a: CMPAS_RT; b: Random Forest Regression; c:
AdaBoost Regression; d: Bagging Regression).
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0.12 − 0.2 mm h-1. The three approaches produce
comparable spatial distributions of the RMSE corrected.
The RMSE of roughly 900 stations is 0− 0.04 mm h-1,
and it greatly reduces throughout the basin. After
correction, the RMSE of 82% of the stations decreased,
and the RMSE of 80% of the stations decreased by more
than 20%. It demonstrates that the three revision
techniques are superior for modifying discrete data.

The stations with large RE in CMPAS_RT are
mostly concentrated within Sichuan Basin, with 54% of
stations having an RE of 0.15 − 0.35. The revised RE
within the basin is significantly decreased, with 547

stations having an RE of 0−0.05 and 50% having an RE
of less than 0.1. In brief, a total of 77% of stations in
Sichuan have lowered RE, with 62% having reduced RE
by more than 20%.

Most of the stations in Sichuan have a COR greater
than 0.85, indicating that CMPAS_RT is substantially
connected with non-independent stations. The COR for
the majority of the stations after the modification is 0.9
or higher, accounting for 70% of the total. Since the
COR is already high before the correction, there is a
minor rise after the revision.

Figure 5. Comparison of indicators of CMPAS_RT with revised products (a: MB; b: RMSE; c: RE; d: COR).

900
800
700
600
500
400
300
200
100

0

3.3 Analysis of different regions
For analysis, Sichuan province is split into three

regions: the Western Sichuan plateau, the Panxi Area,
and the Sichuan Basin. The RE of CMPAS_RT and the
revised products for different regions are shown in Table
4. Affected by the vast number of stations in the Sichuan
Basin and the complicated station environment, the
average RE of CMPAS_RT in the Sichuan Basin is 0.38;
the RE of the Western Sichuan Plateau is the smallest,
which is 0.266, and AdaBoost regression has the best
correction impact on the RE of the whole Sichuan,
which is 0.136 for the Western Sichuan Plateau, 0.184
and 0.169 for the Panxi Area and Sichuan Basin,
respectively. The PDF of the RE change rate for the
revised CMPAS_RT products is shown in Fig. 6a-6c for
various regions, with the Western Sichuan Plateau
showing the most obvious effects of the revision, where
the RE is reduced by more than 90% for about 30% of
the stations. Bagging regression performs best in the
range of 70%-80% of RE reduction for the Panxi Area
and the Sichuan Basin, and the proportion of stations in
this range is the biggest, at 20% and 23%, respectively.

Table 5 shows the RMSE of CMPAS_RT and the
revised products for different regions, which is greater in
the Sichuan Basin than in the Panxi area or the Western
Sichuan Plateau. With a reduction of 61% and 62% in
the RMSE for the Panxi Area and the Sichuan Basin,
respectively, Bagging Regression performed marginally
better than the other approaches. The three machine

learning techniques produced comparable outcomes for
the Western Sichuan Plateau, showing a significant 77%
reduction.

The PDF of the RMSE change rate is shown in Fig.
6d-6f. On the Western Sichuan Plateau, the RMSE is
decreased by more than 90% at roughly 30% of the
stations, and the Random Forest revision is ideal for this
interval. Besides, the RMSE is reduced by 70%−80% at
approximately 20% of the stations, and Adaboost
regression is optimal in this interval. For the Panxi Area,
20% of the stations have a 70% − 80% reduction in
RMSE, Bagging Regression worked best in the interval
where the RMSE is decreased by 60% − 70%, while
Random Forest Regression performs the best in the
interval where the RMSE is dropped by 30%−60%. The
most significant outcome of the correction is the
reduction in RMSE by more than 70% at approximately
70% of the stations on the Western Sichuan Plateau.

The COR for various regions is illustrated in Table
6. Due to the reduced precipitation, the original COR is
higher for the Western Sichuan Plateau at 0.925 and
lower for the Panxi Area at 0.857. The PDF of the COR
change rate for the revised products is displayed in Fig.
6g-6i, Random Forest has a good effect on revising the
COR, more than 50% of the stations on the Western
Sichuan Plateau have a rise of roughly 0−10% in COR,
and a small number of stations in the Panxi Area see an
increase of more than 10%. In the Sichuan basin, the
COR varies less.
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Table 4. RE for CMPAS_RT and revised products in different regions.

Region

Western Sichuan Plateau

Panxi Area

Sichuan Basin

RE

CMPAS_RT

0.266

0.357

0.380

Random Forest Regression

0.140

0.184

0.170

AdaBoost Regression

0.136

0.184

0.169

Bagging Regression

0.154

0.193

0.175

Table 5. RMSE for CMPAS_RT and revised products in different regions.

Region

Western Sichuan Plateau

Panxi Area

Sichuan Basin

RMSE (mm h-1)

CMPAS_RT

0.141

0.197

0.241

Random Forest Regression

0.032

0.079

0.093

AdaBoost Regression

0.032

0.080

0.093

Bagging Regression

0.033

0.076

0.091

Table 6. COR for CMPAS_RT and revised products in different regions.

Region

Western Sichuan Plateau

Panxi Area

Sichuan Basin

COR

CMPAS_RT

0.925

0.857

0.917

Random Forest Regression

0.941

0.892

0.921

AdaBoost Regression

0.938

0.881

0.920

Bagging Regression

0.934

0.884

0.918

Figure 6. PDF of indicators’change rate of the revised CMPAS_RT products in different regions (a, b, c: RE; d, e, f: RMSE; g, h, i:
COR).
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3.4 Analysis of different seasons
The RE of CMPAS_RT and the revised product for

each season are compared in Table 7, with CMPAS_RT
having the biggest RE in summer (0.59) and the smallest
RE in winter (0.208). Bagging regression performs
somewhat better in spring, summer, and autumn, with
similar results for the three methods of revision in
winter. The average RE is lowered by 80% in winter,
62% in spring, 60% in summer, and 22% in autumn. The
findings of the Random Forest revisions are chosen for
further analysis since the three machine learning
revision results are comparable for all seasons (Fig. 7).
Fig. 7a-7c demonstrates that the autumn revision’s RE
decrease is lower, and for the Sichuan Basin, the RE
reduction is mostly focused at around 20%.

The RMSE is presented in Table 8, with the
maximum RMSE of 0.541 mm h-1 in summer and the
smallest RMSE of 0.031 mm h-1 in winter. The overall
effect of the three revision approaches is similar
throughout all seasons, with a considerable reduction in
RMSE. The biggest reduction in RMSE is recorded in
winter (71%), spring (69%), summer (65%), and the
least in autumn (31%).

The PDF of the RMSE change rate for the modified
CMPAS_RT products for each region during different
seasons is shown in Fig. 7d-7f. For the majority of
stations and during all seasons, the RMSE drops by over
90% for the Western Sichuan Plateau. For stations in the
Panxi Area, the reduction in RMSE is greater in the
spring, summer, and winter months than in the autumn.

The majority of the stations in the Sichuan Basin see a
decrease of more than 90% in RMSE in spring and
summer, a reduction concentrated in the range of 60% to
90% in winter, while the revision effect in autumn is
limited, with a decline of 40% to 60% in RMSE.

The COR of CMPAS_RT and the revised products
during various seasons are shown in Table 9.
CMPAS_RT’s COR is somewhat greater in summer at
0.935 and marginally lower in the fall at 0.862. The
COR increases modestly in all seasons following the
adjustment because it is already high before it, with an
increase of 2.2% in autumn, 1.6% in winter, 1.2% in
spring, and 0.8% in summer. Fig. 7g, 7h, and 7i displays
the probability distribution of COR for the updated
CMPAS_RT products during various seasons. With the
majority of stations exhibiting a 0 − 5% increase in the
revised COR change, the trend of the revised change in
the three areas is generally similar across the four
seasons.

In the Panxi Area and Sichuan Basin, the revised
effect of CMPAS_RT is somewhat weaker for autumn.
Reviewing the weather and climate profiles for October
2020 reveals that the majority of the basin had more than
15 days of precipitation, and a large percentage of the
Panxi Area had between 10 and 18 days, all of which
were higher than in the same period in the typical year.
The machine learning method to construct the error
relationship between precipitation products and
observed values may be impacted by the month’s high
precipitation, leading to a marginally decreased accuracy.

Season

Spring

Summer

Autumn

Winter

RE

CMPAS_RT

0.298

0.590

0.285

0.208

Random Forest Regression

0.117

0.250

0.221

0.040

AdaBoost Regression

0.114

0.238

0.226

0.040

Bagging Regression

0.112

0.234

0.222

0.041

Table 7. RE of CMPAS_RT and revised product for different seasons.

Table 8. RMSE of CMPAS_RT and revised product for different seasons.

Season

Spring

Summer

Autumn

Winter

RMSE (mm h-1)

CMPAS_RT

0.123

0.541

0.138

0.031

Random Forest Regression

0.038

0.190

0.064

0.009

AdaBoost Regression

0.038

0.193

0.065

0.009

Bagging Regression

0.038

0.194

0.066

0.010
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3.5 Analysis of heavy precipitation event
On June 12-13, 2021, the northeastern part of the

Sichuan Basin had heavy rainfall, with the center of the
precipitation occurring there. The hourly rainfall
intensity and cumulative rainfall throughout this process
were strong. When the 24-hour cumulative precipitation
from CMPAS_RT is compared to the rain gauge data
(Fig. 8a and 8b), the CMPAS_RT precipitation area,
direction, and rainband pattern are very comparable with
the observations. Since the three machine learning
techniques produce similar results, the updated random
forest findings are chosen for in-depth investigation.

The MB of hourly rainfall before and after the
revision is illustrated in Fig. 8c and Fig. 8d. The region
with the highest MB prior to the adjustment is in the
northeastern half of the basin's heavy precipitation zone
where 18% of the stations have MB greater than 0.02
mm h-1 or less than -0.02 mm h-1. With only 9% of the
stations having a considerable MB, the MB inside the

area of severe precipitation has significantly decreased
since the revision.

For analysis, the top five stations in terms of 24-
hour cumulative precipitation are chosen (Fig. 9). Four
stations recorded 24-hour cumulative precipitation totals
that are higher than that of CMPAS_RT, showing that
CMPAS_RT does somewhat underestimate heavy
precipitation. The MB is decreased to varying degrees
after the revision, with a maximum reduction of 58%.
The COR at the five stations also slightly increased
following the correction.
3.6 Analysis of independent data

The data from 449 quality-controlled hydrological
stations in July 2021 are selected for the independent
analysis, and the station distribution is shown in Fig.
10a. Fig. 10b-10f displays a comparison of the indicators
before and after the adjustment. The independent
revision is most impacted by Bagging Regression. The
range of MB variations after the revision significantly

Table 9. COR of CMPAS_RT and revised product for different seasons.

Season

Spring

Summer

Autumn

Winter

COR

CMPAS_RT

0.930

0.935

0.862

0.932

Random Forest Regression

0.941

0.943

0.881

0.947

AdaBoost Regression

0.938

0.940

0.875

0.942

Bagging Regression

0.932

0.940

0.874

0.944

Figure 7. PDF of RE, RMSE, and COR change rate of the revised CMPAS_RT products in different seasons (a, b, c: RE; d, e, f:
RMSE; g, h, i: COR).
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decreased, although the median change in MB was
slightly different. The median COR between
hydrological stations and CMPAS_RT is slightly lower
than that of meteorological stations, at 0.6, because the
accuracy of precipitation data at hydrological stations is
0.5 mm and that of CMPAS_RT is 0.1 mm, which is
subject to some error. The range of fluctuation of COR is
dramatically reduced after the revision, with the median

increasing to 0.63.
The majority of the CMPAS_RT and hydrological

stations’TS and POD fall within the range of 0.7 − 1.
Following the revision, the median has slightly
increased, and the TS and POD ranges are primarily in
the range of 0.8−1. The MR is largely between 0 and 0.3
before the adjustment, and between 0 and 0.2 after it,
with less missing rate.

Figure 8. Spatial distribution of 24-hour cumulative precipitation and MB (a: 24-hour cumulative precipitation of weather stations;
b: 24-hour cumulative precipitation of CMPAS_RT; c: MB distribution of CMPAS_RT; d: MB distribution of the revised product).

Figure 9. Revisions of different heavy precipitation stations (a: 24-hour cumulative precipitation; b: MB; c: COR).

Figure 10. Revision effect of hydrological stations (a: Spatial distribution of hydrological stations; b: MB; c: COR; d: TS; e: POD; f:
MR).
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4 CONCLUSIONS

In this study, three ensemble learning approaches
are chosen to adjust the CMPAS product by using high-
precision DEM data to extract topographic features such
as elevation, slope, slope direction, slope variability, and
surface roughness as topographic factors, combined with
precipitation-related air temperature and wind speed as
meteorological factors. Different stations, different
geographical regions, different seasons, and precipitation
processes are used to study the corrective effect, and
hydrological stations are introduced for an independent
analysis.

The three machine learning methods’ revised
findings for Sichuan are comparable, showing varying
degrees of improvement in each error indicator and the
most notable improvement in MR, proving that the three
machine learning techniques have a significant revision
impact on the missing report situation.

The statistical analysis of the station revision’s
impact reveals that the revised MB, RMSE, and RE have
all been greatly reduced, indicating that the machine
learning approach is successful in revising discrete data.
There is a slight increase in COR following the
adjustment since they are already high previously. 85%
of the automatic weather stations see an MB reduction
of more than 30%, 80% of the stations see an RMSE
drop of more than 20%, and the RE of 62% of the
stations is decreased by over 20%. 70% of the stations
have a revised COR of 0.9 or higher.

The Sichuan Basin, the Panxi Area, and the Western
Sichuan Plateau are three separated zones for analysis.
When it comes to reducing the RMSE for the Panxi Area
and the Sichuan Basin, Bagging regression performs
marginally better than the other two machine learning
techniques. The results are comparable for all three
approaches in the Western Sichuan Plateau; the RMSE
of CMPAS_RT is decreased by 77%, making it the best
adjustment among the three regions, and more than 70%
of stations experience this reduction. Adaboost
regression is the most effective in revising the RE in all
three regions, and the revision remains especially
successful in the Western Sichuan Plateau where the RE
is reduced by far more than 90% in roughly 30% of the
stations. Random Forest Regression has better results in
revising the COR, with over 50% of the stations on the
Western Sichuan Plateau increasing the COR by around
0−10%.

The findings of the seasonal revisions demonstrate
that the overall revisions are similar for all three
methods, with considerable reductions in both RMSE
and RE. Winter sees the greatest decrease in the RMSE
and RE, followed in turn by spring, summer, and
autumn. The four seasons are broadly consistent with the
corrected trends in COR, with the majority of stations
indicating an increase of 0−5%.

Regarding precipitation processes, the CMPAS

understates heavy precipitation in the non-independent
evaluation. The revised CMPAS is close to the rain
gauge precipitation to varying degrees, and the revised
MB within the heavy precipitation zone has been greatly
reduced. The median of each indicator has improved
marginally and the range of fluctuation of the indicators
has greatly decreased when using the hydrological
stations for independent evaluation.

To review, the ensemble learning model has a
significant revision effect in revising the CMPAS
precipitation products by using topographic and
meteorological factors, with the most considerable
correction outcome in the Western Sichuan Plateau, and
the less the precipitation, the better the revision
outcome, and the accuracy of the heavy precipitation
process is also improved to some extent. The error
fluctuation range of the revised CMPAS is substantially
smaller for independent stations.

A limitation of this study is that there are few
stations in complex terrain and the data is susceptible to
the surrounding environment. Furthermore, station
maintenance is more difficult. Therefore, there is some
compromise with the reliability and quality of the
observed precipitation data. Further research is needed
to develop a more accurate and efficient revised model
to enhance the accuracy of CMPAS.
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