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Abstract: As a typical physical retrieval algorithm for retrieving atmospheric parameters, one-dimensional variational
(1DVAR) algorithm is widely used in various climate and meteorological communities and enjoys an important position
in the field of microwave remote sensing. Among algorithm parameters affecting the performance of the 1DVAR
algorithm, the accuracy of the microwave radiative transfer model for calculating the simulated brightness temperature is
the fundamental constraint on the retrieval accuracies of the 1DVAR algorithm for retrieving atmospheric parameters. In
this study, a deep neural network (DNN) is used to describe the nonlinear relationship between atmospheric parameters
and satellite-based microwave radiometer observations, and a DNN-based radiative transfer model is developed and
applied to the 1DVAR algorithm to carry out retrieval experiments of the atmospheric temperature and humidity profiles.
The retrieval results of the temperature and humidity profiles from the Microwave Humidity and Temperature Sounder
(MWHTS) onboard the Feng-Yun-3 (FY-3) satellite show that the DNN-based radiative transfer model can obtain higher
accuracy for simulating MWHTS observations than that of the operational radiative transfer model RTTOV, and also
enables the 1DVAR algorithm to obtain higher retrieval accuracies of the temperature and humidity profiles. In this
study, the DNN-based radiative transfer model applied to the 1DVAR algorithm can fundamentally improve the retrieval
accuracies of atmospheric parameters, which may provide important reference for various applied studies in atmospheric
sciences.
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1 INTRODUCTION

Microwave radiometers can obtain observed
brightness temperatures by measuring the microwave
radiation of the Earth-Atmosphere system and be
applied to detect atmospheric parameters (Turner and
Löhnert [1]; Zhang et al. [2]; Ebell et al. [3]). Brightness
temperatures observed by microwave radiometers can be
converted into atmospheric parameters, such as
temperature, humidity, and precipitation, etc., by using a

retrieval algorithm (Zhang et al. [4]; Li et al. [5]; Ebell et
al. [6]). The retrieval algorithms for the atmospheric
temperature and humidity profiles based on passive
microwave observations have been developed for more
than 60 years, and can be divided into two categories:
statistical retrieval algorithms and physical retrieval
algorithms (Polyakov et al. [7]; Tan et al. [8]).

The essence of statistical retrieval algorithms is to
establish a statistical retrieval model between the
atmospheric parameters from historical data and
corresponding observations of the microwave
radiometer. The retrievals of corresponding atmospheric
parameters can be obtained when new observations of
the microwave radiometer are input into established
statistical retrieval models (Gohil et al. [9]; Chakraborty
and Maitra [10]; He et al. [11]; He et al. [12]). Linear
regression algorithms, neural network algorithms, and
ridge regression algorithms are all commonly used
statistical retrieval algorithms.

The essence of physical retrieval algorithms is to
input the initial values of atmospheric parameters to the
radiative transfer model to calculate the simulated
brightness temperatures by iterative process to
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continuously adjust the initial values, which makes the
simulated brightness temperatures generated by the
adjusted initial values be as close as possible to the
observed brightness temperatures of the microwave
radiometer. The iteration is completed when the
differences between the simulated brightness
temperatures calculated by the radiative transfer model
and the observed brightness temperatures of the
microwave radiometer meet a certain threshold, and then
the final adjusted values are the retrievals of atmospheric
parameters (Liu and Weng [13]; Aires et al. [14]). The
physical retrieval algorithm fully considers the physical
process of microwave transportation in the atmosphere
and uses the optimal solution method to realize the
retrieval calculation of atmospheric parameters.
Currently, one-dimensional variational (1DVAR)
algorithm is the most widely used physical retrieval
algorithm (Boukabara et al. [15]; He et al. [16]).

At present, statistical inversion algorithms are
widely used in the field of microwave remote sensing of
the atmosphere because they do not involve any physical
concept, operate easily, are fast in the calculation, and
have high retrieval accuracy, etc. Meanwhile, with the
development of deep neural networks (DNN), their
powerful nonlinear mapping capability has led to the
unprecedented development of statistical retrieval
algorithms (Blackwell and Chen [17]; He et al. [18]).
However, the disadvantages of statistical retrieval
algorithms are also obvious, such as high dependence of
the algorithm performance on the representativeness of
the historical dataset, poor retrieval accuracy in extreme
weather conditions, the dependence of empirical
algorithm parameter settings, and limitation by the local
optimality of the feature learning on historical data, etc.
Especially important is that the retrieval results obtained
by the statistical retrieval methods may be difficult to be
interpreted from a physical point of view (He et al. [11]).
Therefore, it is still necessary to rely on physical
retrieval algorithms to fundamentally improve the
retrieval accuracy of atmospheric parameters. This is
also the reason why physical retrieval algorithms play an
irreplaceable position in the field of microwave remote
sensing of the atmosphere, although the computational
efficiencies of physical inversion algorithms are
relatively low, and a large number of parameter settings
are required before retrieval.

As a typical representative of physical retrieval
algorithms, 1DVAR algorithm is still the core algorithm
for retrieving atmospheric parameters in meteorological
and climate communities (Liu and Weng [13]; Aires et
al. [14]; Rosenkranz [19]; Ishimoto [20]). Moreover, 1DVAR
and the numerical weather prediction (NWP) radiance
assimilation based on the variational approach are
mathematically similar concepts sharing a number of
common characteristics, such as minimizing a similar
cost function, both need to set representative and
accurate covariance matrices and mean backgrounds,

simulating observations by similar radiative transfer
model, etc. (Boukabara et al. [15]). Therefore, carrying
out the study of 1DVAR algorithm and then improving
the retrieval accuracies of atmospheric parameters based
on 1DVAR algorithm is of great significance for various
theoretical and applied research in atmospheric science,
and provides important reference for NWP radiance
assimilation systems.

For the 1DVAR algorithm, there are many factors
that affect its algorithm performance, such as the setting
of the initial state of atmospheric parameters, the
calculation of the mean background and the covariance
matrices, the accuracy of the radiative transfer model for
simulation, and the bias correction for observations.
However, the computational accuracy of the radiative
transfer model for simulating observations is an
important factor limiting the performance of the 1DVAR
algorithm (Rodgers [21]; Susskind et al. [22]). Currently,
the radiative transfer models used in the 1DVAR
algorithm are all physical models developed by various
remote sensing scientific communities, such as
Radiative Transfer for TOVS (RTTOV) developed by
the European Centre for Medium-Range Weather
Forecasts (ECMWF), Community Radiative Transfer
Model (CRTM) developed by the Joint Center for Data
Assimilation (JCDA) of the United States, Atmospheric
Radiative Transfer Simulator (ARTS) developed jointly
by Hamburg University and Chalmers University
(Saunders et al. [23]; Liu and Boukabara [24]; Buehler et
al. [25]; Eriksson et al. [26]).

The physical-based radiative transfer model takes
the radiative transfer equation as the physical basis to
describe the transfer process of the microwave in the
atmosphere, establishes a nonlinear model between the
atmospheric parameters and the observed brightness
temperatures of the microwave radiometer, and realizes
the purpose of outputting the simulated brightness
temperatures of the microwave radiometer by inputting
the atmospheric parameters to the radiative transfer
model. However, the establishment of the radiative
transfer model requires an accurate description of the
physical process of microwave transmission in the
atmosphere, which is difficult to be modeled under some
weather conditions, especially under the cloudy and
rainy sky (Elachi and Zyl [27]). Therefore, the accuracy of
the physical-based radiative transfer model for the
simulated brightness temperature has been restricted.
Even so, the existing physical-based radiative transfer
models are widely used in various atmospheric
applications and scenarios. They have comparable
accuracy in describing the physical processes of
microwave transmission in the atmosphere, and in turn,
comparable accuracy in simulating the observations of
the microwave radiometer.

From the perspective of improving the 1DVAR
algorithm, it is expected to further improve the
accuracies of the 1DVAR algorithm for retrieving the
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atmospheric parameters if a radiative transfer model
with higher accuracy for simulating the observations is
applied to the 1DVAR algorithm. In recent years, deep
neural network (DNN) has been developed rapidly due
to its powerful nonlinear mapping capability, and has
been widely used in the field of microwave remote
sensing (He et al. [11]; Yan et al. [28]). In this study, DNN
is used to describe the nonlinear relationship between
atmospheric parameters and microwave observations,
and a DNN-based radiative transfer model is established.
Then, the DNN-based radiative transfer model is applied
to the 1DVAR algorithm, and the 1DVAR retrieval
system is built to carry out a retrieval study of the
atmospheric temperature and humidity profiles based on
the observations of MWHTS onboard Feng-Yun-3D (FY-
3D) satellite.

The structure of this paper is organized as follows.
Section 2 introduces MWHTS characteristics and the
atmospheric data used in this study. Section 3 describes
the establishment of the DNN-based radiative transfer
model. The detailed description of the 1DVAR algorithm
and the establishment of the 1DVAR retrieval system are
presented in Section 4. The experimental design of this
study is elaborated in Section 5, followed by the
experimental results presented in Section 6. Finally, the
conclusions of this study are given in Section 7.

2 DATA DESCRIPTION

2.1 MWHTS observations
In this study, the observed brightness temperatures

of Microwave Humidity and Temperature Sounder
(MWHTS) onboard the FY-3D satellite are used to carry
out the retrieval study of the atmospheric temperature
and humidity profiles. MWHTS is an important payload

onboard Feng-Yun-3C (FY-3C) and FY-3D satellites.
MWHTS has a total of 15 channels in the range of 89
GHz to 183 GHz, which can realize the simultaneous
detection of atmospheric temperature and humidity.
MWHTS has eight temperature sounding channels set in
the 118 GHz band to provide the temperature
information from the surface to about 30 hPa. MWHTS
contains five humidity sounding channels set in the 183
GHz band, which are mainly used to detect the water
vapor distribution in the troposphere. In addition,
MWHTS also includes two window channels set at
89 GHz and 150 GHz, respectively, which can provide
surface information such as surface temperature, surface
humidity, pressure, etc. As a total power microwave
radiometer, MWHTS performs the cross-track scanning
along the orbit with the angle of 53.35° from the nadir to
inspect 98 nominal fields of view (FOVs) in each scan
line, which is corresponding to the scanning of a swath
of 2645 km in 2.667 s (Guo et al. [29]; Wang et al. [30]; He
et al. [31]; Carminati and Migliorini [32]). Table 1 lists
major channel characteristics of MWHTS. Level 1b
brightness temperatures of MWHTS onboard FY-3D
satellite are used in this study, which are available from
the National Satellite Meteorological Center (NSMC)
(http://satellite.nsmc.org.cn).
2.2 Atmospheric data

In this study, the atmospheric parameters from the
ERA-Interim reanalysis dataset provided by ECMWF
are used to develop and validate the DNN-based
radiative transfer model, generate parameters for the
retrieval algorithm, and validate the performance of the
retrieval system. ERA-Interim is a global atmospheric
reanalysis describing the recent history of the
atmosphere, land surface, and oceans, produced by the

Table 1. Channel characteristics of MWHTS.

Channel

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Frequency (GHz)

89.0

118.75±0.08

118.75±0.2

118.75±0.3

118.75±0.8

118.75±1.1

118.75±2.5

118.75±3.0

118.75±5.0

150.0

183.31±1.0

183.31±1.8

183.31±3.0

183.31±4.5

183.31±7.0

Sensitivity (K)

1.0

3.6

2.0

1.6

1.6

1.6

1.6

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

In-flight sensitivity (K)

0.23

1.62

0.75

0.59

0.65

0.52

0.49

0.27

0.27

0.34

0.47

0.34

0.30

0.22

0.27

Calibration accuracy (K)

1.3

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

1.3

1.3

1.3

1.3

1.3

1.3

Peak WF height (hPa)

surface

30

50

100

250

350

surface

surface

surface

surface

300

400

500

700

800
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forecast model and data assimilation system. ERA-
Interim is very popular and is used for monitoring
climate change, validating the retrieval algorithm, and
commercial applications. For a detailed documentation
of the ERA-Interim Archive, please refer to Dee et
al. [33]. In this study, the profile parameters used in ERA-
Interim include temperature, specific humidity, cloud
cover, cloud liquid water, and cloud ice water, which
have a total of 37 pressure levels unevenly distributed
from 1000 to 1 hPa. The surface parameters used in
ERA-Interim include 2 m temperature, 2 m dewpoint
temperature, surface pressure, skin temperature, 10 m u
wind component, and 10 m v wind component. The
profile parameters and the surface parameters are used to
build the atmospheric dataset with a space resolution of
0.5° × 0.5° and a temporal resolution of 6 h (i. e., with
data available at 0000 UTC, 0600 UTC, 1200 UTC, and
1800 UTC).
2.3 Data preprocessing

In this study, MWHTS brightness temperatures
from the ocean area of 25° N-45° N and 160° E-220° E
from 1 January 2019 to 30 June 2019 are selected to
retrieve the atmospheric temperature and humidity
profiles. According to the research purpose of this paper,
the following pre-processing is required for MWHTS
brightness temperatures and the atmospheric dataset.
MWHTS brightness temperatures are collocated with the
atmospheric parameters in the atmospheric dataset with
the criteria that their time difference is less than 10 min
and the absolute distances between their positions
(latitude and longitude) are less than 0.1 °. Thus, 510500
collocated samples can be obtained. Since DNN is used
in this study to describe the relationship between
atmospheric parameters and MWHTS observed
brightness temperatures, the training, and validation of
DNN are performed. Moreover, the parameters of the
1DVAR algorithm need to be set, and the validation of
the algorithm performance is conducted in the study.
Therefore, the collocated samples from 1 January 2019
to 31 May 2019 from the analysis dataset with 425911
collocated samples are used to develop the DNN-based
radiative transfer model and set the parameters of the
1DVAR algorithm. The collocated samples from 1 June
2019 to 30 June 2019 are taken as the testing dataset
with 84589 collocated samples for validating the DNN-
based radiative transfer model and the 1DVAR
algorithm.

3 DNN-BASED RADIATIVE TRANSFER MOD⁃
EL

The key problems studied in the field of microwave
remote sensing can be divided into two categories: one
is the retrieval problem and the other is the forward
problem (Ulaby et al. [34]). The so-called retrieval
problem is the conversion from microwave observations
into atmospheric parameters. In recent years, neural
networks have been widely used in the retrieval of the

atmospheric parameters using passive microwave
observations due to their powerful nonlinear mapping
capability. Typically, for retrieving the atmospheric
parameters based on neural networks, the microwave
observations are used as the input and the specific
atmospheric parameters collocating the microwave
observations are used as the output to train the neural
network. When new microwave observations are input
to the trained neural network model for prediction, the
predicted values for specific atmospheric parameters
corresponding to the new microwave observations are
obtained, i. e., the retrievals of specific atmospheric
parameters (Zhou and Grasstotti [35]; Li et al. [36]; Tan et
al. [37]). The transformation from microwave
observations to atmospheric parameters is achieved
since neural network can describe the nonlinear
relationship between microwave observations and
atmospheric parameters.

The transformation from atmospheric parameters to
microwave observations is the forward problem in the
field of microwave remote sensing (Rodgers [38]). At
present, almost all the solutions to the forward problem
are modeling the interaction between microwave and
atmospheric components from a physical perspective
and obtaining physical-based radiative transfer models,
such as RTTOV, CRTM, ARTS, etc. In essence, the
physical-based radiative transfer model is a description
of the nonlinear relationship between atmospheric
parameters and microwave observations (Ulaby et
al. [34]). However, inspired by the application of neural
networks to the retrieval problem, the nonlinear
relationship between atmospheric parameters and the
microwave observations described in the physical-based
radiative transfer model can also be described using
neural networks. The neural network is trained by taking
atmospheric parameters as the input and the microwave
observations collocating atmospheric parameters as the
output. When the new atmospheric parameters are fed
into the trained neural network for prediction, the
predicted values of the microwave observations
corresponding to the new atmospheric parameters are
obtained, i. e., the simulated values of the microwave
observations. This is also the basic procedure of building
a DNN-based radiative transfer model in this study.

Rather than using the traditional radiative transfer
model which models the transformation of microwave in
the atmosphere from a physical perspective, this study
uses DNN to describe the nonlinear relationship between
atmospheric parameters and microwave observations,
and then builds a DNN-based radiative transfer model.
This section presents the structure and parameter
configuration of the developed DNN, and describes the
method of building the DNN-based radiative transfer
model.
3.1 DNN algorithm

Compared with shallow neural networks, deep
neural networks have better nonlinear computational
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power due to more hidden layers and more neurons in
the hidden layers, and therefore can achieve better
prediction performance (Lecun et al. [39]; Lee et al. [40]).
According to the objectives and requirements for this
study, a four-layer deep neural network is developed,
which contains an input layer for inputting the input
samples, an output layer for outputting the output
samples, and two hidden layers for nonlinear
computation to describe the nonlinear relationship
between input samples and output samples. The numbers
of neurons in the input layer and the output layer are
determined based on the input samples and the output
samples, while the numbers of neurons in the two hidden
layers need to be set by performing a large number of
test experiments in order to obtain the optimal prediction
performance.

In the process of optimizing the parameter
configuration of the DNN through extensive test
experiments, a training dataset is used to train the DNN
and a testing dataset is used to evaluate the predictions
of the trained DNN, where the Root Mean Square Error
(RMSE) between the predicted values of the trained
DNN and the corresponding true values in the testing
dataset are used as an indicator to evaluate the
performance of the DNN. The Rectified Linear Unit
(ReLU) is chosen as the activation function in the
hidden layers of the DNN due to its superiority over
sigmoid and Leaky ReLU in overcoming the problems
of saturation and vanishing gradients, and obtaining the
highest prediction accuracy (Yan et al. [28]). It is also
important to note that setting too few epochs during
training may result in obtaining an underfit model, and
setting too many epochs may result in overfitting. To
deal with this problem, an underfit model is avoided by
setting a sufficiently large number of epochs, and early

stopping is chosen to prevent overfitting (Srivastava et
al. [41]). Early stopping splits the training dataset and uses
a subset (20%) as a validation dataset to monitor the
performance of DNN in the training. The training will be
terminated if the loss on the validation dataset does not
change over a given number of epochs (i. e., patience).
Based on the requirements of this study for the
application of nonlinear models, the maximum number
of epochs and the patience for the designed DNN is
3000 and 100, respectively.
3.2 DNN-based radiative transfer model

According to the configuration of the DNN in
Section 3.1, the atmospheric parameters and satellite
viewing angles in the analysis dataset built in Section
2.3 are used as the input samples, and the observed
brightness temperatures of all 15 channels of MWHTS
in the analysis dataset are used as the output samples to
train the DNN; thus, the number of neurons in the input
layer is 192 and the number of neurons in the output
layer is 15. A set of experiments are carried out to test
the effect of different numbers of neurons in the hidden
layers on the performance of the DNN. When the
numbers of neurons in the hidden layers are both set to
be 512, the optimal prediction performance of the DNN
can be obtained, and a DNN-based radiative transfer
model can be established. The atmospheric parameters
and satellite viewing angles in the testing dataset are fed
into the DNN-based radiative transfer model to obtain
the DNN-based simulated brightness temperatures of
MWHTS. The accuracy of the DNN-based radiative
transfer model can be evaluated using MWHTS
observed brightness temperatures in the testing dataset.
The schematic diagram for building the DNN-based
radiative transfer model is shown in Fig. 1.

Figure 1. The schematic diagram for building the DNN-based radiative transfer model.

4 1DVAR RETRIEVAL SYSTEM

4.1 1DVAR algorithm
As a typical physical retrieval algorithm, the

1DVAR algorithm inputs the initial state variable into
the radiative transfer model to calculate the simulated
brightness temperature and compares it with the
observed brightness temperature, and then adjusts the

Training dataset
Examples/inputs: the atmospheric parameters and satellite viewing

angles in the analysis dataset
Lable: MWHTS observations in the analysis dataset

The DNN-based radivative
transfer model

The atmospheric parameters
and satellite viewing angles

in the testing dataset

The DNN-based simulations
of MWHTS

DNN
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initial state variable by using an iterative algorithm, with
the aim of fitting the simulated brightness temperature
produced by the adjusted initial state variable and the
observed brightness temperature until the difference
between the simulated brightness temperature and the
observed brightness temperatures meets a set threshold,
at which point the adjusted initial state variable is the
retrieval value corresponding to the observed brightness
temperature. The 1DVAR algorithm consists of two
main parts. One is the radiative transfer model, which
usually chooses the operational radiative transfer model,
such as RTTOV, CRTM, and ARTS. The other is the cost
function, which can be expressed as (Boukabara et
al. [15]),

ζ =
1
2 (S-Sa)

TC
-1
SS(S-Sa)+

1
2 [f(S)-~R]TC

-1
ΨΨ[f(S)-~R] (1)

where ~R is the observed brightness temperature, CΨΨ is
the observation error covariance matrix, Sa is the
background state variable, CSS is the background
covariance matrix, f(S) represents the radiative transfer
model that simulates the observed brightness
temperature at the atmospheric state variable S, and T
represents the matrix transpose. Provided that the errors
in the observations are neither biased nor correlated,
Gaussian distribution, the optimal estimate of the
atmospheric state variable, can be obtained by
minimizing the cost function,

where K=∇Sf(S) is the Jacobians for S, and represents the
derivative of the simulated brightness temperature with
respect to S, n is the iteration index, S1 is the initial state
variable, and Sn+1 is the optimal estimate of the
atmospheric state variable, i. e., the retrieval of the
specific atmospheric parameter. Equation 2 shows that
the parameters of the 1DVAR algorithm contain the
background state variable, the initial state variable, the
background covariance matrix, the radiative transfer
model, the bias between the observed brightness
temperature and the simulated brightness temperature
(observation bias), and the observation error covariance
matrix, all of which have direct impacts on the retrieval
accuracy of the 1DVAR algorithm. The 1DVAR retrieval
system can be established by setting these parameters of
the 1DVAR algorithm.
4.2 1DVAR retrieval system
4.2.1 A PRIORI INFORMATION

Among the many parameters of the 1DVAR
algorithm, the background covariance matrix, the
background state variable, and the initial state variable
are collectively referred to as the prior information for
the 1DVAR algorithm. The essence of the 1DVAR
algorithm is to find the inverse of the radiative transfer
equation, and to find the optimal solution among an
infinite number of solutions through an iterative
algorithm. The role of the prior information is to restrict
the optimal solution to the practical atmospheric state,
and therefore crucial, as it directly determines whether
an optimal solution exists and the accuracy of the
optimal solution (Sahoo et al. [42]).

The background covariance matrix describes the
statistical variability characteristics of the atmospheric
state variables at a specific time and over a specific
space location, and is typically generated using historical
atmospheric datasets, such as Radiosonde Observation
(RAOB) data, and reanalysis data. The elements and the
correlations between the elements in the background
covariance matrix are directly related to the statistical
characteristics of the atmospheric state, and therefore a
more representative background covariance matrix will

be obtained by taking into account factors such as time,
place, and season in calculating the background
covariance matrix. Furthermore, the data volume of the
historical data used to calculate the background
covariance matrix has an important influence on the
retrieval accuracy of the 1DVAR algorithm. The
statistical characteristics of the background covariance
matrix calculated using a larger volume of historical data
are more pronounced and will result in a higher retrieval
accuracy of the 1DVAR algorithm, but are not favorable
for case studies in specific weather conditions. For case
studies in specific atmospheric states, the background
covariance matrix is usually calculated using historical
data for a short period before and after microwave
observations. This paper focuses on retrieving the
temperature and humidity profiles over specific regions
of the ocean, and uses the temperature and humidity
profiles from the analysis dataset built in Section 2.3 to
generate the background covariance matrix. The
background covariance matrix is expressed as
(Boukabara et al. [15]),

σ
2
ij =
1
N∑i = 1

N ∑j = 1
N ( Si - -Si )×( Sj - -S j ) (3)

where σ
2
ij is one of the elements of the matrix

corresponding to row i and column j. S is the mean value
along the row or along the column, and N is the number
of the temperature profiles or the humidity profiles used
to calculate the matrix.

Typically, the background state variable is available
from the retrieval of the statistical retrieval algorithm,
the output of the numerical weather prediction model, or
the average value of the climatological dataset. The
output of the statistical retrieval algorithm is obtained by
building a statistical model for retrieving, which in turn
serves as a background state variable for the 1DVAR
algorithm. This often results in high accuracy, but
obviously increases the computational effort in the
retrieving. Forecast data output from a numerical
weather prediction model is often used as a background
state variable because of its high accuracy, but its small

Sn+1 = Sa + CSSK
T
n[KnCSSK

T
n+CΨΨ]-1[~R-f(S)]-Kn(Sa-Sn)] (2)
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temporal resolution has limitations in terms of real-time
atmospheric soundings. Although the mean value of the
climatological dataset differs significantly from the
practical atmospheric state, which can adversely affect
the retrieval accuracy of the 1DVAR algorithm, it is
more commonly used in theoretical studies to investigate
the effect of a given algorithm parameter on the
algorithm performance of the 1DVAR due to its easy
accessibility and low computational effort. This paper is
designed to investigate the effect of the DNN-based
radiative transfer model on the retrieval performance of
the 1DVAR algorithm, and therefore uses the mean
temperature profiles and the mean humidity profiles
from the analysis dataset built in Section 2.3 as the
background profiles for the 1DVAR retrieval system.

The initial state variable is used as the initial input
to get the physical iterative process started.
Theoretically, the closer the initial state variable is to the
true value, the faster the iterative process converges, but
it does not affect the final retrieval accuracy of the
1DVAR algorithm. The methods used to obtain the
background state variable can all be used to obtain the
initial state variable (Srivastava et al. [41]). In this study,
the mean temperature profiles and the mean humidity
profiles from the analysis dataset built in Section 2.3 are
also used as the initial profiles for the 1DVAR retrieval
system.
4.2.2 OBSERVATION BIAS CORRECTION

The 1DVAR algorithm retrieves the atmospheric
parameter using an iterative technique under the
assumption that observations are unbiased and have
Gaussian errors. The observation bias should be taken
into account when determining the appropriate weight of
observations in the 1DVAR retrieval process. Therefore,
it must be quantified and removed. However, the causes
of observation bias are manifold and complicated, which
are related to the systematic errors in any one (but
generally a combination) of the following sources: the
satellite sounder (e. g., poor calibration or adverse
environmental effects), the radiative transfer model (e.g.,
errors in the physics, or spectroscopy, or from the non-
modeled atmospheric process, etc.), and errors in the
atmospheric parameters from some data sources (e. g.,
radiosonde observations, NWP analysis, climate
reanalysis, etc.) (Dee [43]; Auligne et al. [44]; Gayfulin et
al. [45]). The observation bias correction scheme based on
a statistical model whose calculation process is simple
has been widely used in the NWP data assimilation
system and the retrieval systems (Kazumori [46]; Zhu et
al. [47]; Dee and Uppala [48]). Nowadays, the bias
correction schemes are mainly divided into linear and
nonlinear corrections, which represent the linear and
nonlinear relationships between satellite observations
and air mass, respectively, and the nonlinear corrections
have a superior correction performance (He et al. [49]).
Neural networks are widely used in observation bias
correction due to their strong nonlinear mapping

capability.
In our study, a DNN model is also used to correct

the observation bias and the bias correction method
based on DNN is developed. First, the atmospheric
parameters from the testing dataset built in Section 2.3
are input to the radiative transfer model to calculate the
simulated brightness temperatures. Then, input the
collocated samples from 1 June 2019 to 22 June 2019 in
the testing dataset from the retrieval analysis dataset
with 63442 collocated samples, including the
atmospheric parameters, the simulated brightness
temperatures, and the observed brightness temperatures,
and the remaining collocated samples in the testing
dataset from the retrieval testing dataset with 21147
collocated samples.

The bias correction method based on DNN is
performed as follows. The observed brightness
temperatures in the retrieval analysis dataset and the
observation biases (the observed brightness temperatures
minus the simulated brightness temperatures) in the
retrieval analysis dataset are used as the inputs and the
outputs of the DNN model, respectively, to train the
DNN, and then a bias correction model based on DNN is
built, and the observed brightness temperatures in the
retrieval testing dataset is used to be the inputs for the
bias correction model based on DNN to generate the
predictions of the observations bias in the retrieval
testing dataset. Finally, the corrected brightness
temperatures can be obtained by the observed brightness
temperatures minus the predictions of the observation
bias in the retrieval testing dataset. The scheme of the
bias correction process is shown in Fig. 2.
4.2.3 OBSERVATION ERROR COVARIANCE MATRIX

The observation error covariance matrix is
generated using the observation bias and the sensitivities
of MWHTS channels measured in flight shown in Table
1. The observation error contains the observation bias
and the channel sensitivity, which is usually considered
to be independent of each other in the radiometer
channels, so that the observation error covariance matrix
can be expressed as a diagonal matrix, and the diagonal
elements can be expressed as (Löhnert et al. [50])

r2 = f 2 + e2 (4)
where r is the square roots of the diagonal elements of
the observation error covariance matrix, f is the channel
sensitivity measured in flight, and e is the observation
bias.
4.2.4 THE JACOBIANS FOR THE RETRIEVAL PARAMETERS

Currently, Jacobian is usually calculated
numerically. For the temperature profile T, the Jacobian
for the temperature at the ith pressure level can be
expressed as

KT,i=TB(Ti+0.5)-TB(Ti-0.5) (5)

where Ti denotes the temperature at the ith pressure
level, and TB is the simulated brightness temperature
calculated by the radiative transfer model. KT,i represents
the change of the simulated brightness temperature
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corresponding to each 1 K change in the temperature at
the ith pressure level. Similarly, the Jacobian for the
water vapor at the ith pressure level can be expressed as,

KH,i=TB(Hi-0.05Hi)-TB(Hi+0.05Hi) (6)

where Hi is the water vapor at the ith pressure level. KH,i

represents the change of the simulated brightness
temperature corresponding to each 10% change in the
water vapor at the ith pressure level.

Based on the above settings of the background
covariance matrix, the background profiles, the initial

profiles, the observation error covariance matrix, the
Jacobians for the temperature and humidity, and the
correction of the observation bias for the 1DVAR
algorithm using the analysis dataset, the 1DVAR
retrieval system can be developed. The iteration is
stopped if the relative difference of the cost function
within two iterations is less than 0.01. Moreover, if the
iterative times reach 10, the iteration is also stopped, and
the retrieval is set to the initial profile. The overall
process of building the 1DVAR retrieval system in this
study is summarized in Fig. 3.

Figure 2. The schematic diagram of the bias correction based on DNN.

Figure 3. The schematic diagram of building the 1DVAR retrieval system.

5 EXPERIMENT DESIGN

To evaluate whether the DNN-based radiative
transfer model developed in this study can improve the
retrieval accuracy of the 1DVAR retrieval system when
applied to it, the following three experiments are
designed.

Experiment 1: Evaluation of the DNN-based
radiative transfer model. The purpose of this experiment
is to evaluate the accuracy of the DNN-based radiative

transfer model for simulating MWHTS observed
brightness temperatures. The specific experimental
design is as follows.

The DNN-based radiative transfer model is built
according to the procedure given in Section 3.2. The
atmospheric parameters and satellite viewing angles in
the testing dataset are input to the DNN-based radiative
transfer model to obtain the DNN-based simulated
brightness temperatures of MWHTS. For comparison,
the same atmospheric parameters and satellite viewing
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angles are also input to the fast radiative transfer model
RTTOV v11.3 to obtain the RTTOV-based simulated
brightness temperatures of MWHTS. The MWHTS
observed brightness temperatures in the testing dataset
are used to validate the accuracies of the two sets of
simulated brightness temperatures.

Experiment 2: The observation bias correction for
MWHTS. The correction of observation bias for
MWHTS has a direct impact on the retrieval accuracy of
the 1DVAR retrieval system. However, when the DNN-
based radiative transfer model and RTTOV are applied
separately to the 1DVAR retrieval system, the bias
between MWHTS observed brightness temperature and
the DNN-based simulated brightness temperature (DNN-
based observation bias) is different from the bias
between MWHTS observed brightness temperature and
the RTTOV-based simulated brightness temperature
(RTTOV-based observation bias), which in turn leads to
different bias correction effects and different retrieval
results. To compare the correction effect of the DNN-
based observation bias with that of the RTTOV-based
observation bias, the experiment is designed as follows.

First, the atmospheric parameters and satellite
viewing angles in the retrieval analysis dataset and
retrieval testing dataset established in Section 4.2.2 are
input to the DNN-based radiative transfer model to
obtain the DNN-based simulated brightness
temperatures and to RTTOV to obtain the RTTOV-based
simulated brightness temperatures. Then the collocated
samples in both the retrieval analysis dataset and the
retrieval testing dataset including the atmospheric
parameters, the DNN-based simulated brightness
temperatures, the RTTOV-based simulated brightness
temperatures, and the observed brightness temperatures.
Next, following the bias correction process for MWHTS
observed brightness temperatures in Section 4.2.2, the
DNN-based corrected brightness temperatures are
obtained when the observation biases in the retrieval
analysis dataset in Fig. 2 are the differences between the
observed brightness temperatures minus the DNN-based
simulated brightness temperatures. And when the
observation biases in the retrieval analysis dataset in Fig.
2 are the differences between the observed brightness
temperatures minus the RTTOV-based simulated
brightness temperatures, the RTTOV-based corrected
brightness temperatures can be obtained. Finally, the
evaluation of the bias correction effects of the two sets
of corrected brightness temperatures can be performed
using the observed brightness temperatures in the
retrieval testing dataset.

Experiment 3: The 1DVAR retrieval system
retrieving the atmospheric temperature and humidity
profiles using MWHTS observations. The purpose of
this experiment is to evaluate the impact of the DNN-
based radiative transfer model on the retrieval accuracies
of the temperature and humidity profiles when it is
applied to the 1DVAR retrieval system. The specific

experimental design is as follows.
The DNN-based 1DVAR retrieval system is created

when the radiative transfer model is set by the DNN-
based radiative transfer model in the 1DVAR retrieval
system built in Section 4.2. MWHTS observed
brightness temperatures and the DNN-based corrected
brightness temperatures in the retrieval testing dataset
built in Experiment 2 are input to the DNN-based
1DVAR retrieval system separately to obtain the DNN-
based retrieval results before and after the DNN-based
observation bias correction. The correction effect of the
DNN-based bias on the retrieval accuracy of the DNN-
based 1DVAR retrieval system can be evaluated by
comparing these two retrieval results. Similarly, the
RTTOV-based 1DVAR retrieval system is created when
the radiative transfer model is set to be RTTOV in the
1DVAR retrieval system. MWHTS observed brightness
temperatures and the RTTOV-based corrected brightness
temperatures are input to the RTTOV-based 1DVAR
retrieval system separately to obtain the RTTOV-based
retrieval results before and after the RTTOV-based
observation bias correction. The correction effect of the
RTTOV-based bias on the retrieval accuracy of 1DVAR
retrieval system can be evaluated by comparing these
two retrieval results.

Furthermore, by comparing the DNN-based
retrieval results with the RTTOV-based retrieval results,
we can validate whether the DNN-based radiative
transfer model can improve the retrieval accuracies of
temperature and humidity profiles when applied to the
1DVAR retrieval system compared to RTTOV.

6 EXPERIMENTAL RESULTS

This section presents the calculated results of the
simulated brightness temperatures from the DNN-based
radiative transfer model and RTTOV, the results of the
DNN-based observation bias correction and RTTOV-
based observation bias correction, and the retrieval
results of the temperature and humidity profiles from the
DNN-based 1DVAR retrieval system and the RTTOV-
based 1DVAR retrieval system, respectively. In this
study, the calculation accuracy of the radiative transfer
model is evaluated using RMSE between the simulated
brightness temperatures and the observed brightness
temperatures in the testing dataset. The bias correction
effect is evaluated using RMSE between the observed
brightness temperatures and the corrected brightness
temperatures in the retrieval testing dataset. Moreover,
the retrieval results are evaluated using RMSE between
the retrievals of the temperature and humidity profiles
and the temperature and humidity profiles from the
ERA-Interim reanalysis in the retrieval testing dataset.
6.1 Calculated results of the DNN-based Radiative
Transfer Model and RTTOV

According to the design of Experiment 1 in Section
5, the atmospheric parameters and satellite viewing
angles in the testing dataset are input into the DNN-
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based radiative transfer model and RTTOV, respectively,
to obtain 84589 sets of the DNN-based simulated
brightness temperatures and 84589 sets of the RTTOV-
based simulated brightness temperatures. The accuracies
of these two simulated brightness temperatures are

validated by using the observed brightness temperatures
in the testing dataset. The comparison of the DNN-based
simulated brightness temperatures and the RTTOV-
based simulated brightness temperatures is shown in
Fig. 4.

It can be seen from Fig. 4 that the accuracies of the
RTTOV-based simulated brightness temperatures in
window channels 1 and 10, temperature sounding
channels 7-9, and humidity sounding channels 14-15 are
poor, and the worst accuracy of the RTTOV-based
simulated brightness temperature is in the accuracy of
channel 1, which is about 9 K. The main reason is that
the peak WF heights of these channels are close to the
surface, and the radiations observed by these channels
mainly come from the near-surface atmosphere and
surface, which means the errors in the temperature,
water vapor, and surface parameters can all affect the
measurements of these channels. Thus, the nonlinearity
between the simulated brightness temperatures and
atmospheric parameters is relatively complex. The
radiations observed by the temperature sounding
channels 3-6 with the peak WF heights far from the
surface are mainly from the atmospheric temperature,
and the accuracies of the RTTOV-based simulated
brightness temperature in these channels are relatively
high, which are within 3 K. However, although the peak
WF height of the temperature sounding channel 2 is
distributed in the upper atmosphere, the accuracy of the
simulated brightness temperature in channel 2 is poor,
which is about 4.5 K. The reason for this may be the
poor in-orbit sensitivity of channel 2 as shown in Table
1. The accuracies of the simulated brightness
temperatures in the humidity sounding channels 11-13
are mainly affected by water vapor and are within 3 K.

For the DNN-based radiative transfer model, as
shown in Fig. 4, the accuracies of the DNN-based
simulated brightness temperatures in window channels 1
and 10 are about 3.4 K, the accuracies of the DNN-based
simulated brightness temperature in temperature
sounding channels 7-9 and humidity sounding channels
14-15 with peak WF heights close to the surface are
within 2 K, and the accuracies of the DNN-based
simulated brightness temperatures in temperature
sounding channels 2-6 and humidity sounding channels
11-13 with peak WF heights far from the surface are
within 2 K. Similar to the calculation results of RTTOV,
the accuracy of the DNN-based simulated brightness
temperatures in channel 2 is 2 K due to the poor in-orbit
sensitivity.

Compared with RTTOV, the accuracies of the
simulated brightness temperatures calculated by the
DNN-based radiative transfer model are significantly
improved in all 15 channels of MWHTS. Due to the
powerful nonlinear mapping capability of DNN, for
channels 1, 7-9, and 14-15 with the relatively complex
relationships between the measurements and the
atmospheric parameters, the accuracies of the simulated
brightness temperatures calculated by the DNN-based
radiative transfer model in these channels have great
improvements. Especially for window channel 10, the
improvement of the simulation accuracy is the largest at
5.6 K. Compared with RTTOV, the improvements in
accuracies of the simulated brightness temperatures

Figure 4. The comparison of MWHTS simulated brightness temperatures calculated by the DNN-based radiative transfer model
with that calculated by RTTOV.
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calculated by the DNN-based radiative transfer model
are all above 1.5 K in channels 2-6 and 11-13 with peak
WF heights far from the surface. By comparison, it can
be found that the DNN-based radiative transfer model
can obtain higher accuracy than RTTOV for simulating
MWHTS observed brightness temperatures.
6.2 Correction results of the observation bias

Following the design of Experiment 2 in Section 5,
the observed brightness temperatures in the retrieval
testing dataset are corrected for the observation biases,
and 21147 sets of the DNN-based corrected brightness
temperatures and 21147 sets of the RTTOV-based

corrected brightness temperatures are obtained,
respectively. The correction effects of the RTTOV-based
observation biases and the DNN-based observation
biases are evaluated using the observed brightness
temperatures in the retrieval testing dataset, as shown in
Fig. 5 and Fig. 6, respectively. Moreover, RMSEs
between the RTTOV-based corrected brightness
temperatures and the RTTOV-based simulated
brightness temperatures, and RMSEs between the DNN-
based corrected brightness temperatures and the DNN-
based simulated brightness temperatures are summarized
in Table 2.

Figure 5. RMSEs between the observed brightness temperatures and the RTTOV-based simulated brightness temperatures before
and after bias correction.

Figure 6. RMSEs between the observed brightness temperatures and the DNN-based simulated brightness temperatures before and
after bias correction.
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As can be seen from Fig. 5, the bias correction
method based on DNN developed in this study can be
effectively performed to correct the RTTOV-based
observation bias. RMSEs between the RTTOV-based
corrected brightness temperatures and the RTTOV-based
simulated brightness temperatures remain within 2 K for
the temperature sounding channels 2-8, whose peak WF
heights are distributed in the middle and upper
atmosphere. For MWHTS window channels 1 and 10,
and the temperature sounding channel 9, whose peak
WF heights are close to the surface, although the
corrections are significant, RMSEs between the RTTOV-
based corrected brightness temperatures and the RTTOV-
based simulated brightness temperatures are large,
especially up to 7.3 K in channel 10. For humidity
sounding channels 11-15, RMSEs between the RTTOV-
based corrected brightness temperatures and the RTTOV-
based simulated brightness temperatures all remain
within 2 K. The magnitude of the bias correction being
particularly noticeable in channel 15 is about 3.8 K.

It can be seen in Fig. 6 that although the bias
correction method based on DNN can also be effectively
performed for correcting the DNN-based observation
bias, the correction is significantly less effective than
that for the RTTOV-based observation bias as shown in
Fig. 5. For MWHTS channels 2, 10, 14 and 15, the
correction magnitudes are approximately 0.5 K, and the
corrections for the remaining channels of MWHTS are
not significant and the correction magnitudes are all
within 0.3 K. However, it is important to note that in the
1DVAR algorithm, it is the RMSE between the corrected
brightness temperature and the simulated brightness
temperature that intrinsically affects the retrieval
accuracy, rather than the correction magnitude for the
observation bias.

Comparison of Fig. 5 and Fig. 6 shows that
although the bias correction method based on DNN is
much less effective in correcting the DNN-based
observation bias than correcting the RTTOV-based
observation bias, the RMSEs between the DNN-based
corrected brightness temperatures and the DNN-based
simulated brightness temperatures are smaller than the
RMSEs between the RTTOV-based corrected brightness

temperatures and the RTTOV-based simulated
brightness temperatures in almost all channels of
MWHTS, as can be seen in Table 2. Theoretically, the
closer the corrected brightness temperatures are to the
simulated brightness temperatures in the 1DVAR
algorithm, the higher the retrieval accuracies of the
temperature and humidity profiles using the corrected
brightness temperatures. This can be validated by the
1DVAR retrieval system retrieving the temperature and
humidity profiles using MWHTS observations.
6.3 Retrieval results of the temperature and humidity
profiles from MWHTS

According to the design of Experiment 3 in Section
5, MWHTS observed brightness temperatures and the
RTTOV-based corrected brightness temperatures in the
retrieval testing dataset are input to the RTTOV-based
1DVAR retrieval system to obtain the retrieval results of
the temperature and humidity profiles using the
observed brightness temperatures before and after bias
correction, respectively, and the retrieval accuracies are
shown in Fig. 7. Similarly, MWHTS observed brightness
temperatures and the DNN-based corrected brightness
temperatures in the retrieval testing dataset are input to
the DNN-based 1DVAR retrieval system to obtain the
retrieval results of the temperature and humidity profiles
using the observed brightness temperatures before and
after bias correction, respectively, and the retrieval
accuracies are shown in Fig. 8. Furthermore, the
retrieval results from the RTTOV-based 1DVAR
retrieval system and the DNN-based 1DVAR retrieval
system are also concluded in Table 3 and Table 4,
respectively, which are given at five different
atmospheric levels corresponding to 100, 300, 500, 800,
and 950 hPa for temperature and four levels for
humidity except for the 100hPa level since the 100 hPa
level is not reliable.

For the retrieval results of the temperature profiles
from the RTTOV-based 1DVAR retrieval system, it can
be seen from Fig. 7 that the retrieval accuracies of the
RTTOV-based corrected brightness temperatures are
significantly improved in the range of 250-1000 hPa
compared to that of the observed brightness
temperatures without bias correction, with the largest

Table 2. RMSEs between the corrected brightness temperatures and the simulated brightness temperatures.

Channel

1

2

3

4

5

6

7

8

RTTOV-based (K)

7.31

1.52

0.77

0.58

0.53

0.62

1.28

1.64

DNN-based (K)

3.11

1.35

0.69

0.56

0.52

0.61

1.04

1.05

Channel

9

10

11

12

13

14

15

RTTOV-based (K)

3.20

3.72

1.95

1.81

1.67

1.58

1.93

DNN-based (K)

1.66

2.71

1.25

1.26

1.31

1.49

1.92
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Figure 7. Retrieval accuracies of the temperature and humidity profiles from the RTTOV-based 1DVAR retrieval system.

Figure 8. Retrieval accuracies of the temperature and humidity profiles from the DNN-based 1DVAR retrieval system.
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improvements of about 2 K at 300 hPa and 900 hPa. The
retrievals of the temperature profiles corresponding to
the observed brightness temperatures before and after
the bias correction are of comparable accuracy in the
range of 125-200 hPa. For the retrieval results of the
humidity profiles, the retrieval accuracies using the
RTTOV-based corrected brightness temperatures are
significantly improved at all atmospheric levels
compared to that of the observed brightness
temperatures without bias correction, with the largest
improvement of about 15% at 600 hPa, and the
improvements are about 9% in the range of 700-1000
hPa. Moreover, the retrieval accuracies of the
temperature profile using the RTTOV-based corrected
brightness temperatures are within approximately 3K in
the range of 200-1000 hPa, and the retrieval accuracies
of the humidity profile using the RTTOV-based
corrected brightness temperatures are within 22% at all
atmospheric levels.

For the retrieval results of the temperature profile
from the DNN-based 1DVAR retrieval system, it can be
seen from Fig. 8 that the retrieval accuracies using the
DNN-based corrected brightness temperatures are not
greatly improved compared to the observed brightness
temperatures without bias correction, with the largest
improvement being approximately 0.4 K at 550 hPa. For
the retrieval results of the humidity profile, the retrieval
accuracies of the DNN-based corrected brightness
temperatures are also not significantly improved
compared to the observed brightness temperatures
without bias correction, with the largest improvement at
1000 hPa being about 3%. Furthermore, the retrieval

accuracies of the temperature profile using the DNN-
based corrected brightness temperatures are within
approximately 2.5 K in the range of 200-1000 hPa, and
the retrieval accuracies of the humidity profile using the
DNN-based corrected brightness temperatures are within
18.5% at all atmospheric levels.

The comparison of the retrieval results of the
RTTOV-based 1DVAR retrieval system and the DNN-
based 1DVAR retrieval system shows that the
observation bias correction can improve the retrieval
accuracies of the RTTOV-based 1DVAR retrieval system
more significantly. However, comparison of Fig. 7 and
Fig. 8 unveils that both the temperature retrieval
accuracy and the humidity retrieval accuracy using the
DNN-based corrected brightness temperatures improve
at all atmospheric levels compared to that of the RTTOV-
based corrected brightness temperatures, with the
greatest improvement in temperature and humidity
retrieval accuracies at 1000 hPa of approximately 0.8 K
and 600 hPa of about 7%, respectively. Furthermore, for
the retrieval results using the corrected brightness
temperatures, a comparison of Table 4 and Table 5
shows that the improvements in the temperature retrieval
accuracies of the DNN-based 1DVAR retrieval system
compared to that of the RTTOV-based 1DVAR retrieval
system at 100 hPa, 300 hPa, 500 hPa, 800 hPa, and 950
hPa are 0.12 K, 0.11 K, 0.36 K, 0.39 K, and 0.71 K,
respectively. The improvements in humidity retrieval
accuracies are 1.8%, 5.5%, 3.6%, and 2% at 300 hPa,
500 hPa, 800 hPa, and 950 hPa, respectively. The reason
why the DNN-based 1DVAR retrieval system can
improve the retrieval accuracies compared to the

Table 4. Summary of the retrieval accuracies of the RTTOV-based 1DVAR retrieval system.

Level (hPa)

100

300

500

800

950

Observations

Temperature RMSE (K)

2.12

3.74

3.28

3.17

3.81

Humidity RMSE (%)

-

7.53

24.47

30.96

20.14

Corrected Observations

Temperature RMSE (K)

0.52

1.73

1.94

1.64

2.06

Humidity RMSE (%)

-

4.85

11.97

22.01

11.26

Level (hPa)

100

300

500

800

950

Observations

Temperature RMSE (K)

0.51

1.83

1.91

1.44

1.66

Humidity RMSE (%)

-

3.86

8.47

20.50

13.16

Corrected Observations

Temperature RMSE (K)

0.40

1.62

1.58

1.25

1.35

Humidity RMSE (%)

-

3.05

6.51

18.43

9.21

Table 5. Summary of the retrieval accuracies of the DNN-based 1DVAR retrieval system.
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RTTOV-based 1DVAR retrieval system for the
temperature and humidity profiles is that the DNN-based
radiative transfer model applied to the 1DVAR algorithm
can obtain higher accuracies than RTTOV for the
simulated brightness temperatures, the corrected
brightness temperatures in the iterative solution process
are closer to the simulated brightness temperatures, and
the solved temperature and humidity profiles are closer
to the true values.

In summary, the comparison of the bias correction
results for the MWHTS observations and the
comparison of the retrieval results of the 1DVAR
algorithm before and after the observation bias
correction shows that the better the observation bias
correction, the more obvious the improvement in the
retrieval accuracy. And the closer the brightness
temperatures input to the 1DVAR algorithm are to the
simulated brightness temperatures generated by the
radiative transfer model in the 1DVAR algorithm, the
better the retrieval accuracy of the 1DVAR algorithm. It
can also be concluded that the DNN-based radiative
transfer model applied to the 1DVAR algorithm can
improve the performance of the 1DAVR algorithm
because of the higher accuracy in simulating the
brightness temperature that can be obtained.

7 CONCLUSION

In this study, DNN is used to describe the
relationship between the atmospheric parameters and
MWHTS observations, and the DNN-based radiative
transfer model is developed. Compared to the traditional
operational radiative transfer model RTTOV, the DNN-
based radiative transfer model can obtain higher
accuracies in simulating MWHTS observations for all
15 channels of MWHTS. When the DNN-based
radiative transfer model and RTTOV to the 1DVAR
algorithm are applied, the DNN-based 1DVAR retrieval
system and the RTTOV-based 1DVAR retrieval system
can be built respectively. Compared to the RTTOV-
based 1DVAR retrieval system, the DNN-based 1DVAR
retrieval system can achieve higher retrieval accuracies
of the temperature and humidity profiles using MWHTS
measurements. The DNN-based radiative transfer model
and the DNN-based 1DVAR retrieval system developed
in this study are important references for both the
forward and retrieval problems in the microwave remote
sensing of atmospheric parameters.

However, although the DNN-based radiative
transfer model developed in this study is successfully
applied to the 1DVAR algorithm, the accuracy of the
DNN-based radiative transfer model is affected by the
weather conditions, which is similar to the physical-
based radiative transfer model, and thus shows different
performance in retrieving atmospheric parameters.
Therefore, building DNN-based radiative transfer
models according to different weather conditions is our
next research focus. However, it should be noted that

how to classify satellite data according to different
weather conditions based on the characteristics of
satellite data is the key to realize applications of satellite
data. Moreover, the developed DNN-based radiative
transfer model in this study cannot consider gas
absorption, transmissivity, surface emissivity, Jacobians,
etc., compared with the physical-based radiative transfer
model, so further research on the DNN-based radiative
transfer model is needed to expand its application in the
field of atmospheric science.
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