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Abstract: This paper proposes a simple and powerful optimal integration (OPI) method for improving hourly
quantitative precipitation forecasts (QPFs, 0-24 h) of a single-model by integrating the benefits of different bias-
corrected methods using the high-resolution CMA-GD model from the Guangzhou Institute of Tropical and Marine
Meteorology of China Meteorological Administration (CMA). Three techniques are used to generate multi-method
calibrated members for OPI: deep neural network (DNN), frequency-matching (FM), and optimal threat score (OTS).
The results are as follows: (1) The QPF using DNN follows the basic physical patterns of CMA-GD. Despite providing
superior improvements for clear-rainy and weak precipitation, DNN cannot improve the predictions for severe
precipitation, while OTS can significantly strengthen these predictions. As a result, DNN and OTS are the optimal
members to be incorporated into OPI. (2) Our new approach achieves state-of-the-art performances on a single model for
all magnitudes of precipitation. Compared with the CMA-GD, OPI improves the TS by 2.5%, 5.4%, 7.8%, 8.3%, and
6.1% for QPFs from clear-rainy to rainstorms in the verification dataset. Moreover, OPI shows good stability in the test
dataset. (3) It is also noted that the rainstorm pattern of OPI relies heavily on the original model and that OPI cannot
correct for deviations in the location of severe precipitation. Therefore, improvements in predicting severe precipitation
using this method should be further realized by improving the numerical model’s forecasting capability.
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1 INTRODUCTION

Numerical weather prediction (NWP) is not
always accurate in rainfall prediction (Bauer et al. [1];
Leutbecher et al. [2]; Dias et al. [3]; Xue and Liu [4];
Subramanian et al. [5]; Zhang et al. [6]). One effective
method of improving the accuracy of NWP is to
correct the deviation of the forecast from the
observation based on statistical corrective methods
(Bentzien and Friederichs [7]; Volosciuk et al. [8];
Mendez et al. [9]). For example, Zhu and Luo [10]

demonstrated that the frequency-matching (FM)

method can significantly reduce the systematic bias of
precipitation intensity. Hamill et al. [11] pointed out that
an analog post-processing method based on historically
similar weather system can effectively correct the
spatial distribution of precipitation. In addition,
meteorologists also pay attention to extracting effective
information from ensemble forecasts or multi-model
forecasts and to generating deterministic quantitative
precipitation forecasts (QPF) with higher accuracy
(Woodcock and Engel [12]; Tartaglione et al. [13]; Ebert
et al. [14]; Kumar et al. [15]; Sukovich et al. [16]). For
example, Dai et al. [17] contended that the optimal
percentage method could integrate effective
information with different percentiles, while the
probability-matching (PM) method could acquire a
better spatial distribution field from multi-models
(Ebert [18]), especially the weighted PM (WPM)
method, which could automatically give a very low
weight to the less skillful model (Liu et al. [19]).

Another approach to improving QPF is to develop
better weather predicting models by interpreting high-
resolution NWP outputs (Gagne et al. [20]; Rasp and
Lerch [21]; Herman and Schumacher [22]; Zhou et al. [23];
Chattopadhyay et al. [24]; Xia et al. [25]; Han et al. [26]).
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More recently, deep learning (DL) algorithms have
been explosively applied in weather forecasts and have
proven successful in difficult rainfall classification
tasks (Nagaselvi and Deepa [27]; Reichstein et al. [28];
Chen et al. [29]). For instance, Yuan et al. [30] pointed
out that the artificial neural network (ANN) showed
good performance in adjusting for high-resolution
probabilistic QPF outputs. Scher and Messori [31]

suggested that the convolutional neural network (CNN)
could be useful for quantifying the uncertainty of
NWP. Zhang et al. [32] proposed a prediction model
combining k-means clustering and CNN to improve
short-term rainfall forecasting.

However, due to the highly nonlinear and
stochastic nature of the temporal-spatial distribution of
precipitation, the above methods have some
limitations. Statistical corrective methods cannot
overcome major model errors (Maraun et al. [33]).
Although the DL method has limited modeling
capacity for small-sample events (e. g., short-term
rainstorms), it can use big data relationships to create a
better classification forecast model for big-sample
events (e. g., weak rain). As a result, problems in
integrating different bias-corrected technologies have
several unique challenges, requiring methodologies
converting precipitation classifications to QPF and
combining the benefits of various methods.

This paper introduces a simple but powerful
approach for overcoming these existing challenges
based on CMA-GD model from the Guangzhou
Institute of Tropical and Marine Meteorology of China
Meteorological Administration (CMA). CMA officially
approved the CMA-GD model for service operation in
2011 (Zhong and Chen. [34]; Zhong et al. [35]). The rest
of this article is organized as follows. Section 2
provides an overview of data and methodology.
Section 3 discusses the results of the new approach.
Section 4 gives case studies of successes and failures.
Section 5 provides concluding remarks by briefly
discussing the effectiveness and limitations of this
approach.

2 DATA AND METHODOLOGY

2.1 Data
The high-resolution (3 km, hourly) products of

CMA-GD model (Fig. 1) were used in this paper from
January 2018 to March 2021, with the initial times at
00:00 and 12:00 UTC and a valid forecast period of 0-
24 h. The grid data were the nearest neighbor
interpolated to 420 stations in Hunan Province (24-31°N,
108-115 °E) in order to be consistent with observations.
Moreover, the observational data was provided by the
China Integrated Meteorological Information Sharing
System (CIMISS) (Sun et al. [36]).

Data division: All samples were divided into a
training dataset, verification dataset, and test dataset
(Table 1), with the verification set used to determine

the integration solution and the test set used as an
independent sample for forecasting. According to
CMA's service requirements for short-time
precipitation (T/CMSA 0013-2019), the hourly rainfall
was divided into six grades at thresholds of 0.1, 2, 4,
8, and 20 mm h-1. Here a clear day occurred when the
per-hour rainfall was less than 0.1 mm h-1, since 0.1
mm is the smallest detectable amount of rain gauge in
China. And rainstorms occurred when the per-hour
rainfall exceeded 8 mm h-1. Since the number of small-
scale samples (<4 mm) in the training set was greatly
imbalance from that of the large-scale samples, the
small-scale samples were under-sampled at a ratio of 1:
10, and the number of samples at each scale is ten
times that of the severe rainstorm samples to obtain
balanced samples.
2.2 Method
2.2.1 GENERATING MULTI-METHOD CALIBRATED MEMBERS

Three techniques were used in this step to build
the QPF correction models (Table 2), including deep
neural network (DNN), frequency-matching (FM) and
optimal threat score (OTS). Among them, the DNN
technique aims to reduce the location and magnitude
biases of rainfall. While FM and OTS can only
eliminate the deviation in magnitude between QPF and
the observation, they are unable to correct for pattern
biases (Zhu and Luo [10]; Wu et al. [37]; Wu and
Chen[38]). The thresholds of FM and OTS are 0.1, 2, 4,
8, and 20 mm.

For DNN, the training set was used to obtain the
classification of precipitation grades consistent with
Table 1, and verification was performed with the
verification set. Throughout the whole training process,
DNN maintained the model with highest accuracy of
classification in the verification set.

Hyperparameters: The Adam optimizer (Kingma
and Ba [39]), cross-entropy loss function, and StepLR
scheduler were used. The learning rate was set at
0.001 initially and was updated with the optimizer and
scheduler. Batch normalization was used (Ioffe and

Figure 1. Domain of the CMA-GD model in Lambert map
projection. The red line represents the location of Hunan
Province.
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Table 1. Sample sizes for the different grades of datasets from January 2018 to March 2021 (units: number).

Datasets

Training (original)

Training (sampling)

Validation

Test

Period

2018.1—2019.12

2018.1—2019.12

2020.1—2021.3 random 50%

2020.1—2021.3 rest 50%

<0.1

11869522

81140

3416554

3352259

0.1≤x＜2

1495536

81140

457119

511314

2≤x＜4

143606

81140

49399

56631

4≤x＜8

75625

75625

24087

25761

8≤x＜20

36572

36572

10278

11011

>=20

8114

8114

2107

2332

Table 2. List of different techniques for improving quantitative precipitation forecast.

Method

Deep neural network (DNN)

Frequency-matching (FM)

Optimal threat score (OTS)

Principle

Hinton [41]

Zhu and Luo [10]

Wu et al. [37]

Effect

Predict classification of QPF

Adjust magnitude of QPF

Same as FM

Training window

2018.1-2019.12

Past 30 days of the same year and
the next 30 days of last year

Same as FM

Szegedy [40]). The number of epochs was set at 200.
All of the stations were used here for unified modeling.

Selection of variables: From different levels and
types of physical variables in CMA-GD, 51 physical

variables (Table 3) related to precipitation and severe
convection were selected. All variables were
normalized to eliminate the dimensional difference
between different variables before training.

Table 3. Physical variables used in DNN.

Feature

Rain

CAPE

CIN

K

SI

IVT

IVTD

U10/V10

T2/Rh2

Theta

W

GH

DIV/VOR

T/Td

Vapor

Description

Hourly precipitation

Convective available potential energy

Convective inhibition

K index

Showalter index

Integrated vapor transport

Divergence of IVT

10-meter U-wind and V-wind

2-meter temperature and relative humidity

Equivalent potential temperature at 500/700/850/925/1000 hPa

Vertical velocity at 500/700/850/925/1000 hPa

Geopotential height at 500/700/850/925/1000 hPa

Divergence and vorticity at 500/700/850/925/1000 hPa

Temperature and dew point temperature at 500/700/850/925/1000 hPa

Vapor flux at 500/700/850/925/1000 hPa

where x and y are the forecast probability and QPF for
different precipitation grades, respectively; OBSk is the
kth precipitation threshold, which is consistent with the
thresholds of FM and OTS (0.1, 2, 4, 8, and 20); and

P is the forecast probability set of different magnitudes
for the calculated training dataset and validation
dataset.

y =

ì

í

î

ï

ïï
ï

ï

ïï
ï

0, k < 1
OBSk + ( )OBSk + 1 - OBSk xk - Pmin

Pmax - Pmin, k ∈ {1, 2, 3, 4 }

OBS5 + xk - PminPmin
× OBS5, k ≥ 5

Mapping: To conduct a quantitative comparison
with FM and OTS technologies, the DNN
classification results should be transformed into QPF.

The linearly mapping method from forecast probability
to QPF was used here (Fig. 2). The rainfall is
calculated as follows:
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2.2.2 OPTIMAL INTEGRATION METHOD

The optimal integration (OPI) method acquires the
optimal forecast by integrating the best members in
weak and severe precipitation forecasts. The steps are
shown in Fig. 3. Firstly, a study area was selected.
Among all the multi-method calibrated members,
members A and B were assumed to have the optimal
performance for weak precipitation and severe
precipitation, respectively. Next, all stations in the

study area were divided into two groups. The stations
where members A or B showed severe precipitation
were classified into G1, and the remaining stations
were classified into G2. For stations in G1, the OPI
model integrated the values of member B. For stations
in G2, the OPI integrated the values of member A to
obtain the integrated QPF. Finally, a new rule was
introduced to avoid the problem of continuous
precipitation under long-term statistical conditions.
That is, for all severe precipitation stations in the
integrated QPF, whether their precipitation grades in
members A and B spanned more than two orders was
checked. Stations with more than two orders were
replaced with the average of members A and B.

Then, a comparative experiment using a shorter
sliding training window was conducted (Table 4).
Specifically, the OPI experiment used the optimal
severe rain member in the whole validation period as
member B; the OPI-sliding experiment uses the sliding
optimal rainstorm (≥8 mm) member in training
window.

Figure 2. Illustration of the mapping from forecast
probability to QPF.

OBSk+1

Q
P

F y

OBSk

Pmin xk Pmax

Figure 3. Schematic diagrams of the principles of the OPI method. Assuming that members A and B have the best weak rainfall
and severe rainfall among all the multi-method calibrated members, respectively. The balck and red circles represent the severe
rainfall stations of A and B, respectively, and the green part represents stations with weak rainfall. MA and MB indicate the
precipitation magnitude of stations in A and B, respectively.

2.3 Evaluation method
Two assessment indicators including threat score

(TS) and clear-rainy TS were used to assess the QPF
of different bias-corrected methods. Root-mean-square
error (RMSE) and mean absolute error (MAE) were
used to verify the performance of DNN. Table 5 shows
the calculation formulas.

3 RESULTS

3.1 Results of DNN
Figure 4a shows the classification accuracy of the

DNN model on the training and validation datasets. On
the training dataset, the accuracy increases steadily to
relative equilibrium with the increase in training
epochs. In the validation set, the model has the best
effect in about the 30-50th epochs, with an accuracy of
more than 76.5%, and the highest point appears in the
44th epoch, which is 77.2%. It is noted that the

accuracy of the training set is lower than that of the
verification set, which may be related to their sample
balance and imbalance (Table 1).

Figure 4b compares the RMSE and MAE in each
initial time between CMA-GD and DNN. DNN
achieves almost the same performance as CMA-GD,
with their difference failing to pass the Wilcoxon rank
sum test with a confidence level of 95%, which also
demonstrates that the DNN follows the basic physical
laws of CMA-GD.
3.2 Results of OPI

Comparing the results of the three techniques
(DNN, FM and OTS) in the validation set revealed
that DNN has an optimal performance for clear-rainy
and light rain forecasts, but OTS has the best
performances for the other magnitudes of precipitation
(Fig. 5). Specifically, in clear-rainy forecasts, DNN
(0.869) and FM (0.868) show the highest scores, with
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Table 4. Design of the sensitivity experiments.

Experiments

OPI

OPI-sliding

Member of weak rain

Overall optimum

Overall optimum

Member of severe rain

Overall optimum

Sliding optimum

Training window

The whole period

Same as FM

Table 5. Assessment indicators used in the evaluation of QPF. NA, NB, NC, and ND represent the number of hits, misses, false
alarms, and correct negatives, respectively. O and F stand for the observations and model results, respectively. i represents the ith
sample, and N represents the number of valid samples.

Indicator

Threat score (TS)

Clear-rainy TS

Root-mean-square error (RMSE)

Mean absolute error (MAE)

Expression

NA
NA + NB + NC
NA + ND

NA + NB + NC + ND
1
N∑i = 1

N ( Fi - Oi )2

1
N∑i = 1

N |Fi - Oi|

Figure 4. (a) Classification accuracy on the training and validation datasets. (b) Significance test of RMSE and MAE in each
initial time in the verification datasets between CMA-GD and DNN.

no noticeable difference. In light rain forecasts, DNN
has the highest TS score of 0.374, followed by OTS
(0.358) and FM (0.338). From moderate rain to
rainstorms, OTS improved TS by 0.6%, 5.6%, and
1.4% compared with CMA-GD.

As a result, DNN and OTS are used as the overall
optimal members of weak rain and severe rain in the
sensitivity experiments (Table 4). Heavy rain (4 mm)
is regarded as the‘weak’and‘severe’dividing line
here in OPI (Fig. 2). According to the experimental
results, both OPI and OPI-sliding show significant
improvements over CMA-GD in weak forecasts. But
in severe forecasts, only OPI can enhance the original
forecast. Furthermore, OPI realizes improvements of
2.5%, 5.4%, 7.8%, 8.3%, and 6.1% compared with
CMA-GD for each magnitude of precipitation and of
2.1%, 5.3%, 7.1%, 2.5%, and 4.7% compared with

0.8
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0.6

0.5

0.4

A
cc

ur
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y

(a) Accuracy (b) RMSE and MAE
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Validation
Training
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CMA-GD

MAE
DNN

p=0.36

p=0.06

0.8
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0

T
S

FM
OTS

DNN
CMA-GD

OPI
OPI-sliding

Rainstorm
(≥8mm)

Heavy rain
(≥4mm)

Moderate rain
(≥2mm)

Light rain
(≥0.1mm)

Clear-rainy
(<0.1mm)

Figure 5. Threat score of multi-method hourly QPF. Details
of the method are shown in Table 2 and 4.
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Figure 6. Comparison of hourly TS between CMA-GD and OPI in a lead time of 0-24 h on the validation datasets.
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Figure 7. Percentage of TS improvement by different methods on test datasets. (a) Bar chart of overall TS and (b) line chart of
hourly TS. Details of the method are shown in Table 2 and 4.
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Figure 6 displays the performance of the OPI

method in the 0-24 h forecast periods. Compared with
CMA-GD, OPI improves the forecast periods by
100%, 100%, 91.7%, 87.5% and 75% for predictions
from clear-rainy to rainstorms, respectively.

In conclusion, OPI can improve QPF for all
magnitudes of precipitation simultaneously, and the
improvement works at more than 75% of the 0-24 h
lead time.
3.3 Assessment on test data

To verify the stability of OPI method, it is applied

and evaluated on the test set. Overall, three methods
can simultaneously improve QPF of CMA-GD in all
magnitude: OTS, OPI, and OPI-sliding (Fig. 7a).
Additionally, OPI has the best performance, with
increases of 3.3%, 4.8%, 6.6%, 6.3%, and 9.9 % for
prediction from clear-rainy to rainstorms. From the
perspective of the 0-24 h lead time, the results in the
test set are consistent with the results on the validation
set, improving the forecast periods by 100%, 95.8%,
83.3%, 79.2%, and 75% for predictions from clear-
rainy to rainstorms (Fig. 7b). This indicates that OPI
has good stability in different datasets.
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4 CASE STUDY

Advantages and disadvantages of the new
approach are discussed here using four cases (Fig. 8).

Advantages: For weak precipitation, CMA-GD
shows high false alarms while the OPI method can
effectively eliminate false alarms and improve the
clear-rainy forecast (Fig. 8c-h). For severe
precipitation, OPI can decrease the number of missing

rainstorms compared with CMA-GD (Fig. 8b) and the
number of false alarms (Fig. 8d, f). For instance, in
Case III (Fig. 8f), redundant precipitation of CMA-GD
in the northwest of Hunan Province are eliminated by
OPI, and the false alarms for heavy rainstorms in the
southeast are weakened (≥100 mm). As a result, OPI
shows closer rainfall patterns and intensities to those
of the observations.

Disadvantages: It is noted that the rainstorm
pattern of OPI relies heavily on the original forecast.
For example, in Case IV (Fig. 8g-h), CMA-GD
mistakenly predicted the rainstorm in the north as
being in the south, and OPI cannot correct this
deviation in location although the TS increased.

5 CONCLUSIONS

Based on the high-resolution CMA-GD products
(3km, hourly) from 2018 to 2021, this paper proposes
a simple and powerful approach to improve the QPF

of a single model. The following is a summary of the
findings:

(1) The QPF of DNN follows the basic laws of
CMA-GD. DNN and CMA-GD show almost the same
performances as their difference failed to pass the
significance test. In addition, DNN has the optimal
performance compared with the other two techniques
(FM and OTS) in clear-rainy and light rain forecasts,
but OTS has the best performances for the other
magnitudes of precipitation. As a result, DNN and
OTS are used as the overall optimal members of weak

Figure 8. Overall TS (left panels) and 12-hour precipitation distribution of observation, CMA-GD, and OPI (right panels). Initial
forecasting time was 00: 00 UTC May 29, 00: 00 UTC July 9, 12: 00 UTC July 29, and 12: 00 UTC September 9 in 2020,
respectively.
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rain and severe rain in the sensitivity experiments.
(2) According to the experiment results, OPI with

the overall optimum member is better than OPI-sliding
with the sliding optimal member in the verification set.
Although both OTS and OPI can improve QPF from
clear-rainy to rainstorms simultaneously, OPI is better
than OTS. Furthermore, OPI realizes improvements of
2.5%, 5.4%, 7.8%, 8.3%, and 6.1% compared with
CMA-GD for each magnitude of precipitation and the
improvement works at more than 75% of the 0-24 h
forecast period for all magnitudes.

(3) In test dataset, OPI shows good stability.
Additionally, OPI still has the best performance for all
magnitudes among all techniques, with increases of
3.3%, 4.8%, 6.6%, 6.3%, and 9.9% compared with
CMA-GD from clear-rainy to rainstorms. The results
are consistent with those in the validation set. In the
case study, the new approach can effectively eliminate
false alarms of weak precipitation and decrease the
number of missing rainstorms and the false alarm.

According to the findings above, the new
approach achieves state-of-the-art performances on a
single model for all magnitudes of precipitation. In this
study, the OPI method based on DNN and OTS can
effectively improve the QPF of CMA-GD. DNN can
create a predictive model by mining the relationships
between physical variables to improve the QPF.
However, such an improvement is ineffective for
severe precipitation. OTS can help improve severe
weather forecasting, and OPI combines their
advantages. However, it is mentioned that the
rainstorm pattern of OPI relies heavily on the original
forecast and that OPI cannot correct for deviations in
the location. More research into the severe
precipitation issue will be conducted in the future.
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