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Abstract: Based on the spatial regression test (SRT) and random forest (RF), a new spatial consistency quality control
method named SRF was adapted to identify potential outliers in daily surface temperature observations in this article. For
the new method, the SRT method was used to filter the data and the RF method was used to conduct regression. To
evaluate the performance of the quality control method, the SRF, SRT and RF methods were applied to a surface
temperature dataset with seeded errors from different regions of China from 2005 to 2014. The results indicate that the
SRF method outperforms the other two methods in most cases. And the results of the comparison led to the conclusion
that the SRF method improves the regression accuracy of traditional spatial consistency quality control methods and
reduces the runtime of random forest through data refinement.
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1 INTRODUCTION

A growing number of weather stations means large
amount of meteorological data are produced every year
(Steinacker et al.[1]; Delvaux et al.[2]). These
meteorological data are used to analyze the possible
impacts of climate change on environment, validate
climate model simulations and provide initial conditions
for numerical weather prediction (Feng et al.[3];
Schneider et al.[4]; Zhao et al.[5]; Chan et al.[6]). However,
surface temperature observations are easily affected by
the relocation of stations and instrument failure
(Hubbard et al.[7]; Martins et al.[8]); such factors
influence the accuracy of surface observations.
Therefore, quality control for surface temperature
observations is essential to atmospheric sciences (Cheng
et al.[9]). Currently, quality control is not only an
important part of data acquisition, transmission and

processing, but also a precondition for international
exchange of meteorological data and products (Xu et
al.[10]; Beges et al.[11]; Xiong et al.[12]; Li et al.[13]).

Quality control (QC) for a single station mainly
include extreme value check (Grant[14]; Mann et al.[15];
Schwab et al.[16]; Aldukhov and Chernykh[17]), internal
consistency check (Reek et al.[18]; Zhang et al.[19]; Shao et
al.[20]) and temporal outlier check (Fiebrich et al.[21];Ye et
al.[22]). These quality control methods for a single station
strongly depend on the integrity of the observations,
which is based on the time series used for quality
control. Quality control methods for a single station are
not effective if observations are missing for a long
period. Recently, the use of multiple stations in quality
control has proven useful partly due to an increasing
number of observation stations (Eischeid et al.[23];
Bannister[24]). Normally, quality control methods for
multiple stations mainly include the spatial regression
test method (SRT), the inverse distance weighting
method (IDW) and polynomial interpolation (OI).
Besides, SRT and IDW are the most widely used
methods used for the surface temperature quality
control. The main idea of the SRT and IDW methods is
to estimate the value of the target station based on
neighboring stations. The difference between the IDW
method and the SRT method is the choice of weights
between different neighboring stations. The SRT method
has been found to be superior to the IDW method
because the root-mean-square error is more effective for
determining the weights of neighboring stations (You et
al.[25]). In addition, the OI and SRT methods are
consistent with the statistical information needed for
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quality control, as OI calculates the background field and
uses a two-error covariance matrix to analyze the
sensitivity of the target station observations based on
statistical surface meteorological observations and the
background field. A Bayesian QC method (BQC)
calculates the probability of error of the observations
from the perspective of pure mathematics compared with
other quality control methods (Ingleby et al.[26]; Zhu et
al.[27]). BQC provides quality control for surface
meteorological observations by calculating the posterior
probability of gross error. Particularly, a probabilistic
spatiotemporal approach based on a spatial regression
test provided a quantitative probability to indicate the
uncertainty of data (Xu et al.[28]; Cerlini et al.[29]). It is
meaningful and changes the traditional concept of

“right” or “wrong” in meteorological observations
quality control (Choi et al.[30]; Liu et al.[31]), and it also
proves the reliability of the SRT method.

Most of traditional QC methods are based on
mathematical or statistical methods (While et al.[32]).
When mathematical or statistical methods fail to explain
why the performance of a QC method for one station is
affected by the terrain and climate, intelligent algorithms
may be used instead. For example, the SRT method is
still affected by the geographical environment of the
target station and neighboring stations, and there is no
specific formula to explain such impacts. SRT offers the
advantage of selecting the neighboring stations with the
smallest error and weighting neighboring stations
according to historical data, but it is unable to use the
regression method incorporating the observations of
neighboring stations. Therefore, this article proposes to
combine the random forest method (RF), which is more
efficient for regression, with the SRT method which is
used to preprocess the dataset. Then, the dataset is
trained by the RF method, and the estimated value of the
target station is obtained by using the SRF method.

2 DATA

Daily mean temperature observations from 14
target stations from 2005 to 2014 are selected, and the
numbers of the neighboring stations are shown in Fig. 1.
The 14 target stations are abbreviated as follows: Beihai
(Bh), Chengdu (Cd), Guangzhou (Gz), Haikou (Hk),
Hohhot (Hh), Jinghong (Jh), Lhasa (Ls), Lanzhou (Lz),
Miyun (My), Mohe (Mh), Nanjing (Nj), Taiyuan (Ty),
Urumqi (Um) and Changchun (Cc). The neighboring
stations selected are within 100 km or 200 km from the
target station. Fig. 2 shows that there is a significant
difference in altitude among Ls, Lz and Um, where Bh,
Gz, Hk and Jh are in coastal regions and Hh, Jh, Ls and
Lz in high altitude regions. The distribution of surface
automatic weather stations is determined by the
environment and economy of China. The 14 target
stations selected in this article are basically located in
provincial capitals, which are economic and political
centers. They are distributed in different provinces in
China, covering different climates and geographical
conditions of China.

The dataset used in this article is compiled by the
Chinese National Meteorological Center and quality
controlled by some basic quality control methods. In
order to test the performance of the SRF method,
artificial errors are randomly inserted into the
observations from the target station (Hubbard[7]).
Approximately 3% of observations are selected for the
insertion of random errors, and the formula is shown in
(1):

kλ = sλ∙pλ (1)
where k is the value of the insertion error, s is the
standard deviation of the observations from the target
station, λ is the position for error insertion, and p is a
random number with a uniform distribution with a range
of ±3.5.

Figure 1. The number of neighboring stations within 100 km and 200 km from the 14 target stations.
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3 METHODS

3.1 The SRT method
The spatial regression test (SRT) assigns weight

according to the root-mean-square error between the
target station and each of the neighboring stations. For
each neighboring station, a linear regression based on an
estimate is used:

xi = ai + bi∙yi (2)
where xi is the estimate of the target station, the data of
ith neighboring station (i = 1, 2,…,n) is yi, ai and bi are
the regression coefficients, and the weighted estimate x'
is obtained by using the standard error of estimate s:

x' = ∑i = 1
N x2i∙s-2i
∑i = 1

N s2i
(3)

where N is the number of neighboring stations used.
Then, the weighted standard error of estimate s' is
calculated as follows:

s' -2 = N -1∑i = 1
N s-2i (4)

The confidence intervals are formed as follows:
x' - fs' ≤ x ≤ x' + fs' (5)

where f is the quality control parameter. If the relation in
(5) holds, the observations pass the test.
3.2 The RF method

The random forest (RF) method belongs to the
category of ensemble learning. Schapire developed the
probably approximately correct (PCA) learning model,
which evaluates strong and weak learning concepts
(Borchmann et al.[33]). Random forests combine multiple
weak-classifier decision trees with a strong classifier,
which is much easier than searching for a strong
classifier directly. A random forest is a combination of
tree predictors, such that each tree depends on the values
of a random vector sampled independently with the
same distribution for all trees in the forest (Gomes et
al.[34]). For each tree, the random forest selects the
training set by the self-help sampling method
(Bootstrap), the test set is the samples which are not
extracted, and the error estimation is based on the out-of-
bag (OOB) estimation. The random forest method can be
used for classification and regression. When the

dependent variable Y is categorical variable, the model is
classified; when the dependent variable Y is a
continuous variable, the model is regression. The
independent variable X can be a mixture of multiple
continuous variables and multiple categorical variables.

Given an ensemble of classifiers
h1 ( )x , h2 ( )x ⋯hk ( )x , and with the training set drawn
randomly from the distribution of the random vector Y,
X, define the margin function as formula (6):

mg ( )X, Y = avk I ( )hk ( )K = Y - max
j ≠ Y avk I ( )hk ( )K = j (6)

where I ( )∙ is the indicator function. The margin
measures the extent to which the average number of
votes at Y, X for the right class exceeds the average vote
for any other class. The larger the margin, the more
confidence in the classification. The generalization error
is given by:

PE* = PX,Y ( )mg ( )X,Y < 0 (7)

where the subscripts Y, X indicate that the probability is
over the Y, X space. With the increasing number of trees
during the construction of the RF models, the
generalization error of almost all sequences converges to
an upper limit. The upper limit is given by:

PX,Y ( )P ( )hk ( )X = Y - max
j ≠ Y P ( )hk ( )K = j < 0 (8)

For a random forest, the upper limit of the
generalization error is a method to measure the accuracy
of a single classifier and the dependency between the
classifiers. An upper bound for the generalization error
is given by:

PE* ≤ ρ̄ ( )1 - s2 s2 (9)

where ρ̄ is the mean value of the correlation. Although
the bound is likely to be loose, it fulfills the same
suggestive function for random forests as VC-type
bounds do for other types of classifiers. It shows that the
two ingredients involved in the generalization error for
random forests are the strength of the individual
classifiers in the forest, and the correlation between
them in terms of the raw margin functions.

Generally, no overfitting situation, strong ability to
resist noise and estimate the importance of features are
the advantages of RF. These advantages are mainly due

Figure 2. The altitude of the 14 target stations and their neighboring stations within 200 km.

5000

4000

3000

2000

1000

0

-1000

A
lt

it
ud

e
(m

)

Bh Cd Gz Hk Hh Jh Ls Lz My Mh Nj Ty Um Cc

463



Journal of Tropical Meteorology Vol.26

to the randomness of the selection of the samples and the
features. However, the RF method still needs to be
upgraded, for example, there is no suitable solution to
the choice of mtry in random forests.
3.3 The SRF method

The RF method grows an ensemble of trees, and
each node split is selected randomly from among the
best splits; hence, it has strong generalization ability and
avoids over-fitting. In the surface meteorological
observations, not all neighboring stations have a strong
correlation with target stations, and the neighboring
stations with weak correlation are equivalent to the weak
input of the datasets. Data types with many weak inputs
are difficult for typical classifiers, such as neural nets
and trees. Thus, the RF method is more suitable for
surface meteorological observations. By using random
feature selection in addition to bagging, the
generalization error is estimated by out-of-bag (OOB)
estimation, obtaining concrete results from otherwise
theoretical values of strength and correlation. The
quality control method was constructed by the SRT and
RF methods, and the SRF method can be divided into

the following steps. First, dataset L is divided into the
training sample L train and testing sample L test .The RMSE
of ith neighboring stations si is calculated by using
formula (2) and formula (12), according to the weighting
coefficient, to calculate the new dataset L' :

L'i = si∑i = 1
N si

∙Li (10)

where N is the number of neighboring stations to be
used in the new dataset. Then, the RF regression method
is used to train and regress the new dataset. Ultimately,
the values predicted by the SRF method yest are
compared with observations of the target station (yobs)
that have inserted artificial errors. Coefficient f is used to
test whether the observed values fall within the
confidence intervals:∥ yest - yobs ∥≤ f∙σ (11)

If the observations of the target station fall within
the confidence intervals, the observations pass the SRF
test. Fig. 3 illustrates the specific flow of the SRF
algorithm.

Figure 3. Flow chart of the SRF model.
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3.4 Performance measures
The root mean square error (RMSE), mean absolute

error (MAE) and nash-sutcliffe model efficiency
coefficient (NSC) are used to evaluate the performance
of different methods in this article. Average differences
can be described by RMSE or MAE, as RMSE and
MAE are among the best overall measures of model
performance. MAE and RMSE take the following forms:

RMSE = ∑i = 1
n ( )yobs - yest 2

n
(12)

MAE = 1
n
∙∑i = 1

n ∥ yobs - yest ∥ (13)

NSC = 1 -∑i = 1
n ( )yobs - yest 2

∑i = 1
n ( )yobs - ȳ 2 (14)

where yobs is the observations of the target station, yest is
the estimated value of the target station, and ȳ is the

arithmetic mean of yobs for the test sample i = 1, 2,…,n.
In meteorological data quality control research, a

type I error is the incorrect rejection of a true null
hypothesis, while a type II error is the failure to reject a
false null hypothesis. More simply stated, a type I error
is detecting an effect that is not present, while a type II
error is failing to detect an effect that is present. In order
to balance the two types of errors, Xiong[12] utilized a
mean-square ratio of detected errors to the total number
of seeds (MSR) to evaluate the performance of the
method. Also, MSR is employed to evaluate different
quality control methods in this article, which is defined
as follows:

MSR = 1 - ( ( )α∙r1 2 + r2 2 )0.5 (15)

where 1r is the probability of the type I error, 2r is the

probability of the type II error, and α is the weight of 1r .
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4 RESULTS AND DISCUSSION

4.1 Spatial correlation analysis
In this article, daily mean temperature observations

from 2005 to 2013 from 14 target stations and their
neighboring stations are selected as a training sample,
while the 2014 observations are selected as the testing
sample. It is necessary to analyze the spatial correlation
of the 14 target stations and neighboring stations
because the spatial correlation of all stations in a region
within 200 km may impact the performance of the
quality control model. As shown in Table 1, the results
of the spatial correlation are calculated with a semi-
variogram (Hanke et al.[35]; Gunst[36]; Maddox and
Robert[37]; Deng et al.[38]) and Moran’s I (Yuan et al.[39]).
When R2 and I are close to 1, a smaller RSS and larger z-

value is associated with higher spatial correlation
between stations. It is clear that there are high spatial
correlations of Bh, Cd, Gz, Hh, My, Ty and Cc, while
the spatial correlations of Jh, Ls, Lz, Mh and Um are
very low. The information for the 14 target stations is
shown in Fig. 4, where the stations are represented by
five-pointed star and the number next to the stations’
name indicate the number of neighboring stations. The
spatial correlation between the target station and
neighboring stations are indicated as“high”,“low”and

“unknown”. As the number of neighboring stations for
Mh is too small, analyzing the semi-variogram in Mh is
not possible. An assessment of the different methods for
different target stations shows that spatial correlation
does impact the quality control of temperature
observations (Chen et al.[40]).

Figure 4. The spatial correlation of the 14 target stations and the number of their neighboring stations.

Table 1. The spatial correlation indexes for the regions of the 14 target stations.

Bh

Cd

Gz

Hk

Hh

Jh

Ls

Lz

My

Mh

Nj

Ty

Um

Cc

Co

0.101

0.153

0.188

0.157

0.004

0.001

0.01

0.83

0.51

/

0.145

0.001

0.01

0.269

Co+C

0.715

2.398

1.163

0.781
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2.385

6.4

4.403

9.029

/
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4.516

11.58

1.069

Ao

1.17

1.22

2.07

1.53

0.61

0.3

0.55

0.55

1.48

/

4.01

1.8

1.54

1.38

R2

0.848

0.849

0.922

0.804

0.843

0.326

0.385

0.489

0.876

/

0.355

0.929

0.371

0.736

RSS

0.095

1.2

0.076

0.085

2.72

13.3

79.5

4.4

6.55

/

0.071

2.25

375

0.287

I

0.649

0.721

0.581

0.478

0.545

0.162

-0.08

0.143

0.729

-0.411

0.552

0.648

0.446

0.615

E(I)

-0.031

-0.015

-0.023

-0.037

-0.029

-0.091

-0.1

-0.24

-0.013

-0.333

-0.12

-0.012

-0.046

-0.027

mean

-0.032

-0.012

-0.023

-0.037

-0.026

-0.083

-0.103

-0.023

-0.013

-0.349

-0.013

-0.013

-0.046

-0.027

sd

0.097

0.071

0.093

0.118

0.112

0.158

0.179

0.094

0.065

0.29

0.066

0.067

0.123

0.104

z-value

7.031

10.39

6.47

4.348

5.096

1.556

0.125

1.178

11.43

-0.211

8.602

9.809

4.014

6.174
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4.2 Spatial sensibility analysis
10 neighboring stations were selected as the

reference stations for prediction by using the SRT
method. It was unknown whether prediction would be
improved with the 10 reference stations when the SRT
method was combined with the RF method. Therefore, it
was necessary to identify the appropriate number of
selected neighboring stations to determine whether
observations of reference stations should be weighted.
Fig. 5(a-c) shows the performance of the RF, SRT and
SRF methods when 5, 10, 15, and 20 neighboring
stations with lowest standard error were selected as
reference stations, where reference stations represented
as SRF5, SRF10, SRF15 and SRF20. The performances
of the SRF and RF methods were found to be superior to
the SRT method, as the SRF method required less time

to run than the RF method did. To achieve improved
quality control, 15 reference stations were selected and
weighted according to performance and runtime. Since
the number of neighboring stations in Jh, Ls and Mh was
less than 15, the three target stations were tested
separately, and the results are shown in Fig. 5(d-f),
where the values of MAE in Jh, Ls and Mh are 3.448,
2.747 and 1.276 and the values of RMSE in Jh, Ls and
Mh are 3.555, 2.927 and 1.736. The results show that the
SRF and RF methods have better performance than the
SRT method does in regions with a low density of
neighboring stations. Moreover, the MAE and RMSE
obtained by the SRF method were much lower than that
by the SRT method, this is also consistent with Hubbard’
s description of the SRT method which does not apply to
stations with few neighboring stations.

Figure 5. The performance of the RF, SRT and SRF methods for different cases: (a) MAE for different neighboring stations, (b)
RMSE for different neighboring stations, (c) Time for different neighboring stations, (d) MAE and RMSE for Jh, (e) MAE and
RMSE for Ls, and (f) MAE and RMSE for Mh.

In the process of spatial consistency quality control,
the selection of the radius of neighboring stations also
affects quality control. Thus, different radii of
neighboring stations were selected for testing. Fig. 6
depicts the performance difference of the RF, SRF and
SRT methods, where the MAE and RMSE obtained by
the RF and SRF method were lower than those by the
SRT method, and the runtime of the SRF method was
less than that of the RF method with the increase of
radius. The performance of the SRT method fluctuates
greatly when the radius to neighboring stations is less
than 80 km. It indicates that the SRT method relies on
the radius of neighboring stations, while the SRF
method is not affected by the radius of neighboring

stations. In addition, the performance and runtime of the
SRF method are relatively stable regardless of the
change in radius.

Compared with the RF method, the SRF method
can exploit the advantages of the SRT method to extract
the most important information to construct a dataset
with higher correlation, reducing the runtime of the
quality control method while maintaining accuracy. The
comprehensive comparison of the performance of the
SRT, RF and SRF methods in Fig. 6 demonstrates that
the SRF method is superior to the SRT and RF methods
with the same number of selected neighboring stations
and selected radius.
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4.3 Performance of different methods
The performances of the RF, SRF and SRT methods

in different target stations are shown in Fig. 7, which
illustrates that the SRF method is superior to the RF and
SRT methods. On one hand, the runtime of the SRF
method is less than the RF method, particularly for
regions with a large number of neighboring stations. On
the other hand, the MAE and RMSE obtained by the
SRF method are smaller than the SRT method,
especially for regions with few neighboring stations,
such as Jh, Ls and Lz, which have low spatial
correlation. By comparing the performance of the three
methods, it is found that the SRF method has an
improved runtime over the RF method and improved
accuracy in comparison to the SRT method.

It is important to note that the SRF method
performs much better than the SRT method, indicating
that the density of neighboring stations has a
considerable impact on the performance of the SRT

method; however, the density of neighboring stations has
little effect on the performance of the SRF method. In
addition, the SRF method has a lower MAE and RMSE
than the SRT method in the regions with a large number
of neighboring stations. In general, the SRF method is
more stable and accurate than the SRT method as the
number of neighboring stations changes, and the SRF
method is more time efficient than the RF method in
regions with a large number of neighboring stations.

The MAE and RMSE obtained by the SRT method
were lower than the SRF method for the Hh and Um. To
confirm whether this is a particular case or not, it was
necessary to analyze the performance of the SRT and
SRF methods for the Hh and Um. The performances of
the SRT and SRF methods are shown in Fig. 8, where
the diamond indicates the station with a performance of
the SRT method that is better than the SRF method and
the dot indicates the opposite situation and different
colors in Fig. 8 indicate altitude. It is clear that the

Figure 6. The performance of mean of the RF, SRF and SRT methods for different radii (20 km-200 km).

(b) MAE (℃)(a) Time (s) (c) RMSE (℃)

Figure 7. The performance of the RF, SRT, SRF methods for the 14 target stations: (a) Time, (b) MAE, and (c) RMSE.
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performance of the SRF method is better than the SRT
method for most cases, but there are 9 stations in these
two regions for which the performance of the SRT
method is better than the SRF method. In the future, the
selection of the quality control methods for these 9
stations is worth considering.

In this article, we proposed MSR to evaluate the
QC methods, which can deal with the associated trade-
offs between the two types of errors. Fig. 9 provides the
MSR results of RF, SRT and SRF for different cases,
which shows that the SRF can yield a higher MSR than
other two methods for all cases. The MSR obtained by
RF and SRT are close to each other, and there is no
statistical difference except in Hh and Nj. According to
Fig. 9, the performance of three methods for the region
with high spatial correlations is considerably better than
that for the low spatial correlations regions, but SRF is
more stable. That is because RF and SRT is sensitive to
spatial correlations. Also Fig. 10 illustrates the
performance of the three methods with the mean and
standard deviation for high spatial correlations regions
and low spatial correlations regions. For all the cases,
the SRF can yield a good MSR (more than 0.5),
obviously outperforming the RF method and the SRT
method. Fig. 10(a) shows the SRT method is slight better
the RF method in high spatial correlations regions, but
on the contrary, RF is better than SRT in low spatial

correlations regions (Fig. 10(b)).
4.4 Specific regions

For geographical reasons, not all stations have the
ideal number of neighboring stations, which affects the
traditional models. In order to check the quality control
performance of the SRF method in the specific regions,
6 regions with their neighboring stations were selected.
The distribution of stations in the 6 regions is shown in
Fig. 11, where the transparent area indicates the ocean or
beyond borders where cannot pace the surface weather
station.

Figure 8. The performance of the SRT and SRF methods for (a) Hh, (b) Um and their neighboring stations.

Figure 9. Examples of performance of RF, SRT and SRF for
four different regions. The rectangle boxes mark the regions
with different spatial correlations.

Figure 10. The histogram of the MSR for the RF, SRT and SRF methods and with the mean and standard deviation: (a) for the re‐
gions with high spatial correlations; (b) for the regions with low spatial correlations.
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Figure 12 compares the performance of the SRF
and SRT methods in the 6 regions, illustrating that the
SRF method has better accuracy and stability than the
SRT method does. The performance of SRF is similar to
that of the SRT method for Gz, Hk and Mh in Fig. 7.
However, the performance of SRF is superior to that of
the SRT method in the regions of Gz, Hk and Mh in Fig.

12, because the SRT method is more easily affected by
the geographical environment than the SRF method. The
performance of the SRF method is much better than the
SRT method in the regions with few neighboring
stations, such as Jh, Ls and Mh. This result illustrates
that the SRF method has better stability than the SRT
method does.

Figure 11. The distribution of the stations near the seaside for different regions: (a) Bh, (b) Gz, (c) Hk, (d) Jh, (e) Ls, (f) Mh.
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5 CONCLUSION

A new quality control method is proposed to
identify the outliers in daily surface temperature
observations. The key to the SRF method is the data
preprocessing via the SRT method and the regression of
the RF method. The SRT method can effectively select
neighboring stations of high correlation, namely feature
extraction; random forest has the advantages of high
precision and low generalization error. For small sample
data, random forest has better performance. A validation
study by daily temperature observations in 14 target
stations with seeded errors illustrates the excellent
performance of the SRF method with spatial consistency
quality control, especially for the regions with few
neighboring stations.

Traditional spatial consistency quality control
methods have much to do with the geographical
environment of stations; the runtime of the RF method is
influenced by the dataset and it increases with the
increase of neighboring stations. By considering the
spatial correlation coefficients and performance of
different methods, it is clear that spatial correlation may

greatly affect the performance of the quality control
method. For example, the performance of different
methods used for Bh, Cd, Gz, My and Ty is much better
than the different methods used for Jh, Ls, Lz, Mh and
Um. However, in some special stations such as Nj and
Hk, it is difficult to determine its spatial correlation by
using spatial correlation coefficients, but the
performance of the SRF and SRT methods is well. The
performance of Mh, which has the lowest spatial
correlation, has a lower MAE and RMSE than those of
Jh and Ls. Therefore, the results show that spatial
correlation may have an impact on the performance of
the quality control model, and there is no linear
relationship between them.

However, the SRF method has some limitations. (1)
The SRF method does not effectively reduce the runtime
and improve the model accuracy compared with the RF
method in the regions of few neighboring stations such
as Jh, Ls and Mh. (2) The SRF method does work in the
target stations with fewer than 15 (or 10) neighboring
stations. For example, there is no difference between the
performance of the SRF method and RF method in Mh
because the stations filtering function of the SRT method

Figure 12. The performance of the SRT and SRF methods for specific regions: (a) Bh, (b) Gz, (c) Hk, (d) Jh, (e) Ls, (f) Mh.
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does not make sense when the neighboring stations are
fewer than 15 (or 10). (3) The SRF method evaluates the
validity of the observations by thresholding, and simply
divides the observations into correct or erroneous ones.
Actually, the method of representing observations as
credible probabilities is more reliable.

It is recommended that the SRF method could be
used for the target stations with large number of
neighboring stations. In future work, other regression
method and interpolation method will be selected to
improve the accuracy of model especially under extreme
weather conditions such as typhoons. Furthermore, time
series effects have not been added to the model
discussion; in future research, a model that combines
temporal and spatial can be considered.
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