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Operational Evaluation of the Quantitative Precipitation Estimation by a
CINRAD-SA Dual Polarization Radar System
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Abstract: In this paper, a quantitative precipitation estimation based on the hydrometeor classification (HCA-QPE)
algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar of
China. The HCA-QPE algorithm, localized Colorado State University-Hydrometeor Identification of Rainfall (CSU-
HIDRO) algorithm, the Joint Polarization Experiment (JPOLE) algorithm, and the dynamic Z-R relationships based on
variational correction QPE (DRVC-QPE) algorithm were evaluated with the rainfall events from March 1 to October 30,
2017 in Guangdong Province. The results indicated that even though the HCA-QPE algorithm did not use the observed
rainfall data for correction, its estimation accuracy was better than that of the DRVC-QPE algorithm when the rainfall
rate was greater than 5 mm h-1; and the stronger the rainfall intensity, the greater the QPE improvement. Besides, the
HCA-QPE algorithm worked better than the localized CSU-HIDRO and JPOLE algorithms. This study preliminarily
evaluated the improved accuracy of QPE by a dual-polarization radar system modified from CINRAD-SA radar.
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1 INTRODUCTION

Improving the accuracy of quantitative
precipitation estimation (QPE) is important for the early
warning of heavy rainfall. A dual-polarization radar can
transmit and receive horizontally and vertically
polarized radiations simultaneously, which ensures that

we can obtain not only the radar reflectivity Z, but also
the differential reflectivity (ZDR) and the specific
differential propagation phase (KDP). These polarization
parameters provide considerable information with
respect to the shape and phase of hydrometeor particles.
Plenty studies have shown that there will be an
improvement in rainfall estimation if these parameters
are used, and polarimetric rainfall estimation techniques
are more robust with respect to drop size distribution
(DSD) variations than the conventional Z-R relationship
(Chandrasekar et al. [1]; Gorgucci et al. [2]; Ryzhkov et
al. [3]; Cifelli et al. [4]).

QPE with a dual-polarization radar mainly includes
four basic estimators, i.e., R(ZH), R(ZH, ZDR), R(KDP), and
R(KDP, ZDR). These estimators utilize Z, ZDR, and KDP in
different combinations (Ryzhkov et al. [3, 5]; Chen et
al. [6]). Because different estimators have different
estimation accuracies for different rainfall rates or
hydrometeor phases (Chandrasekar et al. [1, 7]; Ryzhkov
et al. [5]; Zrnić and Ryzhkov [8]), a majority of studies
currently seek to optimize estimates through combining
these estimators (Ryzhkov et al. [3]; Pepler [9]; Chen et
al. [6]). In this paper, we call these approaches as
optimization algorithms.

Previous studies show that these
optimized algorithms work very well in different
countries or regions (Ryzhkov et al. [3]; Pepler et al. [9]).
For example, the JPOLE optimized combination
algorithm proposed by Ryzhkov et al. [3] used the R(ZH)
result as a criterion for differentiating between three
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levels of rainfall rates: R(ZH)≤6 mm h-1, 6 ≤R(ZH)≤ 50
mm h-1, and R(ZH) >50 mm h-1. In addition, different
QPE estimators were selected to calculate rainfall rates.
Pepler et al. [9] used reflectivity factor as a criterion to
select estimators and achieved good results. These
optimized algorithms used R(ZH) or the reflectivity
factor to determine which method to employ for a given
set of polarimetric observables. But the validated
area of these optimized algorithms is below the
melting layer where the contamination from mixed-
phase and frozen hydrometeors is minimal. In 2011,
Colorado State University (CSU) proposed the CSU-
HIDRO algorithm (Cifelli et al. [4]), which used the
classification of hydrometeor based on fuzzy logic
identification (Park et al. [10]) to differentiate the
hydrometeor particles in liquid, mixed-phases, and ice.
They were further combined with various polarization
parameters (Z, ZDR, and KDP) thresholds to select
different QPE estimators. Before the CSU-HIDRO
algorithm, Giangrande et al. [11] suggested the EC method
for rainfall estimation that capitalizes on the results of
polarimetric echo classification. These studies indicated
that the radar QPE optimized combination algorithm
based on hydrometeor classification performed better
than other optimization algorithms (Giangrande et al. [11];
Cifelli et al. [4]).

In Guangdong, there are frequent occurrences of
non-liquid hydrometeors (hail) during the process of
strong convection in the annually first rainy season
(April to June), and multiple radar networking is needed.
Therefore, it is necessary to identify such non-liquid
hydrometeors before QPE. Through modification based
on the statistical analysis of polarimetric variables, a
localized hydrometeor classification algorithm (HCA)
that is suited for southern China is obtained (Wu et
al. [12]). In this study, we divide the classification results
into liquid, mixed-phases, and ice. In addition, because
DSDs and rainfall error characteristics vary considerably
among studies and locations, the localized estimators are
fitted based on the DSD data observed in Guangdong.
Subsequently, we combined the polorimetric parameters,
and proposed a QPE algorithm based on the
hydrometeor-classification (HCA-QPE).

Currently, the QPE algorithm used in Guangdong is
the dynamic Z-R relationships algorithm based on
variation correction (Wang et al. [13]) (hereafter referred
to as DRVC-QPE). The main feature of this algorithm is
that Z-R relationships were fitted by radar measured Z
and rainfall rate by rain gauges every 60 minutes. The
CSU-HIDRO and JPOLE (Ryzhkov et al. [3]) algorithms
that were used in this study for a comparison with the
proposed HCA-QPE algorithm did not involve
correction with the measured rainfall data from rain
gauges. The CSU-HIDRO and JPOLE algorithms had
been reported to show good performance in applications
of other regions. However, in Guangdong, the radar
hardware level and DSD observed under the local

climatic background are quite different from those of
other regions. Therefore, the feasibility studies of the
application of these two algorithms in Guangdong would
require a localization approach.

So far, 11 S-band dual-polarization radars have
been set up in Guangdong Province, including the
Guangzhou S-band dual-polarization radar (hereinafter
referred to as the Guangzhou radar), which is the first
dual-polarization radar in China upgraded from the
operational CINRAD/SA weather radar. By 2020, more
than 100 dual-polarization radars will be built or
upgraded in China. In previous studies in China, QPE
with dual-polarization radars were mostly performed to
estimate the QPE only for research purposes (Wei et
al. [14]), and studies on operational radars were limited to
a single method for individual events (Wang et al. [15]).
The operational QPE by the newly-built S-band dual-
polarization radar was not evaluated. Therefore, it is
highly valuable to quantitatively evaluate the actual
influence of the dual-polarization radar on QPE with
immediate attention.

In this paper, the new optimized algorithm (HCA-
QPE), the localized CSU-HIDRO and JPOLE
algorithms, and the DRVC-QPE algorithm operating in
Guangdong Province were applied to estimate the
rainfall of Guangzhou radar continuous observation data
from March 1 to October 30, 2017. The error
characteristics of these algorithms were compared, and
the improvement of the operational QPE by the dual-
polarization radar were analyzed.

2 DATA

2.1 Data resource
The Guangzhou radar became operational in May

2016. The radar operates in the conventional VCP21
volume-scan mode and completes a volume scan using
nine specific elevation angles (0.5° , 1.5° , 2.4° , 3.3° ,
4.3° , 6.0° , 9.9° , 14.6° , and 19.5° ) in 6 min. The
parameters of the radar are presented in Table 1.

From March 1 to October 30, 2017, the Guangzhou
Radar observed 67 rainfall events with the rain gauges in
the 100 - range of the Guangzhou radar observed
precipitation, such as squall lines and typhoons. The
maximum rainfall rate was 183.4 mm h-1. In total, there
are 48, 271 records of hourly rainfall rates that were
greater than 1-mm h-1, 22,189 records of 1-5-mm h-1, 13,
171 records of 5-10 -mm h-1, 8, 839 records of 10-20 -
mm h-1, 3,854 records of 20-50-mm h-1, and 274 records
of more than 50 - mm h-1. Table 2 (see the appendix)
presents the duration and types of rainfall events with a
duration more than 5 hours.

In this study, the DSD data from 8 OTT
disdrometers and 3 Metstar (Beijing Metstar Radar Co.,
Ltd.) disdrometers in Guangdong in 2014, 2016, and
2017 were used to fit the QPE estimators. After the
quality control procedure (Zhang et al. [16]), there were
17, 326 1-min valid DSD samples. The spatial
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distribution of the disdrometers is depicted in Fig. 1.
The hourly rainfall data measured by more than 1600
rain gauges in Guangdong Province were used to
evaluate QPE.
2.2 Data preprocessing and quality control

After Guangzhou radar construction, a series of
tests, such as built-in testing, sun-calibration, and
vertical pointed calibration were conducted by the

Meteorological Observation Center, China
Meteorological Administration. And the result of the test
indicated that ZDR accuracy is better than 0.2 dB (Chen
et al. [17]). The quality control of the radar data was
conducted prior to performing the radar QPE as follows:

(1) noise correction for ρHV ( 0 ) and ZDR based on
the assumption that the horizontal and vertical channel
noise levels of the dual-polarization radar are consistent
(Liu et al. [18]);

(2) all data with ρHV ( 0 ) < 0.7, Z > 40 dB and
absolute value of radial velocity less 0.5 m s-1 were
removed to exclude non meteorological echoes;

(3) all negative values of ZH , ZDR and KDP were
removed, and the values of ZH , and ZDR were smoothed
over 5 range gates to remove noisiness in the raw data,
particularly for ZDR;

(4) in this study, KDP is estimated by ΦDP using the
algorithm like the one in Wang et al. [19] after 5-gate
smoothing filter was applied to the basic ΦDP data in
each ray.

The CAPPI reflectivity at a 3 - km altitude with a
horizontal resolution of 0.01° × 0.01° is used in DRVC-
QPE, while the remaining radar QPE algorithms use
hybrid scanning. When the scanning data at elevation
0.5° is blocked, data with higher layer will be used, and
so on.

Additionally, the processing of DSD data in this
study refers to the method reported by Zhang et al. [20].
The assessment requires consecutive observation records
by the rain gauge for 24 hours; otherwise, the automatic
station would be considered to be unreliable and would
be rejected.

3 QPE ALGORITHMS

The QPE that uses dual-polarization radar data
mainly includes four basic estimator, including R(ZH), R
(ZH, ZDR), R(KDP), and R(KDP, ZDR). The estimators are as
follows:

Variable

Antenna diameter

Antenna gain

Bean width

Frequency

Peak power

Pulse width

Pulse repetition frequency

Work model

Minimum detectable power

Noise

Dynamic range

Range resolution

Observation accuracy

Parameter

8.5 m
≥44 dB
0.95°

2885 MHz
≥325 kW

1.57 us, 4.7 us

322 Hz-1304 Hz
Simultaneously transmit and

receive

≤−109 dBm (1.57 us)

≤−114 dBm (4.7 us)

≤4 dB
≥85 dB

250 m/1000 m
Z≤ 1dB

ZDR ≤ 0.2dB

ΦDP ≤ 2°

KDP ≤ 0.2° km-1

ρHV ( 0 ) ≤ 0.001

Table 1. The main technical parameters of the Guangzhou dual-
polarization radar.

Figure 1. Distribution of disdrometers in Guangdong Province.
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R ( ZH) = a1 × ZH

b1, (1)

R ( KDP) = a2 × K
b2

DP, (2)

R ( ZH, ZDR) = a3 × Z
b3

H × 10
c3 × ZDR, (3)

R ( KDP, ZDR) = a4 × K
b4

DP × 10
c4 × ZDR, (4)

where a, b, and c are the coefficients; R is the rainfall
rate in mm h-1; ZH is the reflectivity factor in mm6 m-3.

In the case of light rain, the polarization parameters
of ZDR and KDP are observed to be relatively small with a
few obvious fluctuations that can be attributed to noise
(Chen et al. [17]); therefore, R ( ZH, ZDR ), R ( KDP), and
R ( KDP, ZDR ) exhibit no advantages over the R ( ZH)
method in this case (Chandrasekar et al. [1]). As the
rainfall rate increases, the deformation of raindrops
becomes significantly reduced. ZDR is the polarization
parameter that characterizes this deformation
information. Hence, the R ( ZH, ZDR) and R ( KDP, ZDR)
based on ZDR exhibit significant advantages, and
Ryzhkov et al. [5] depicted that R ( KDP, ZDR) resulted in
considerably accurate predictions with respect to
precipitation in case of medium to high intensities. With
a further increase in rainfall intensity, especially when
the precipitation contains non-liquid forms, R ( KDP )
provides distinctively accurate estimations because the
parameter that characterizes the phase variability of the
radar beam after it passes through the precipitation
particles, KDP, is considerably resilient to the attenuation
and particle phase effects (Chandrasekar et al. [1]).

Currently, the dual-polarization radar QPE is
usually performed by combining these estimators, which
can be referred to as the optimization algorithm. The
localized JPOLE algorithm (Ryzhkov et al. [3]), the
localized CSU-HIDRO (Cifelli et al. [4]), and the HCA-
QPE algorithm proposed in this study are all
optimization algorithms.

3.1 HCA-QPE algorithm
To develop an optimization algorithm, it is first

necessary to localize the estimators. Based on the DSD
data observed in Guangdong, the estimator coefficients
that are suitable for the annually first rainy season and
annually second rainy season (July to September) in
Guangdong were fitted by using the piecewise fitting
method (Zhang et al. [16]). The results are listed in Tables
3 and 4. In this study, the HCA suggested by Wu et
al. [12] was used to classify the hydrometeors, and we
divided the classification results into liquid, mixed-
phases, and ice, and we subsequently combined the
polarimetric parameters to guide the choice of
estimators. The HCA-QPE algorithm flowchart is
depicted in Fig. 2, where NaN represents an invalid
value. An analysis of the polarization radar data
indicates that noise can easily affect the ZDR and KDP

when the SNR is < 20 dB, leading to large
spatiotemporal variations (Chen et al. [17]). Therefore, the
R1 ( ZH) used for light rain (Zhang et al. [20]) is used to
perform the estimation under these SNR conditions
because the ZDR and KDP are not appropriate for light rain
estimation. In this study, the threshold of ZH is the same
with CSU-HIDRO algorithm (Cifelli et al. [4]), and after
a large number of experiments, the threshold of ZDR and
KDP are concluded (Fig. 2).

Figure 2. Flowchart of the HCA-QPE algorithm.

Table 3. The QPE estimator coefficients of the annually first
rainly season.

Estimators

R1(ZH)

R2(ZH)

R1(KDP)

R2(KDP)

R(ZH, ZDR)

R(KDP, ZDR)

Coefficient a

0.0082

0.0154

30.30

33.6142

0.0084

51.16

Coefficient b

0.749

0.7681

0.9298

0.8332

0.9284

0.9311

Coefficient c

−0.4055

−0.0852

SNR≥20 R1(ZH)
No

Yes

Mix IceHydrometeor categoriz
ation using HCA algo

rithm

Liquid

YesNo

No No
No YesYesYes

ZH≥38

KDP≥1

KDP≥1
ZDR≥1 ZDR≥1

R1(ZH) R1(KDP) R(ZH，ZDR)R2(ZH) R2(KDP) R(KDP，ZDR) NaN
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3.2 Localized CSU-HIDRO and JPOLE algorithms
The CSU-HIDRO algorithm has been described in

Cifelli et al. [4]. In this paper, we used the HCA suggested
by Wu et al. [12] as the guide of the choice of the
estimators. And the coefficients of each estimator were
refitted using the DSD data recorded in Guangdong. The
results are listed in Tables 5 and 6.

According to the JPOLE (Ryzhkov et al. [3])
optimization algorithm, the choice between various
estimators is determined solely by the rainfall rate
computed from R ( ZH) relation. In this paper, the
coefficients of each estimators were refitted using the
DSD data recorded in Guangdong. The results are listed
in Tables 5 and 6. Because the JPOLE algorithm uses
rainfall rate as a threshold to select different QPE

estimators, R ( )KDP , R ( )ZH, ZDR , and R ( )KDP, ZDR may

provide invalid or large false values when ZDR or KDP is
either small and unstable or negative. To avoid this,
R ( ZH) is used as the final QPE result under the

aforementioned conditions.
3.3 Operational QPE algorithm in Guangdong
Province (dynamic Z-R relations based on variational
correction QPE algorithm (DRVC-QPE))

Because of the variation in the DSD of precipitation
and the error of reflectivity factor, it is impossible to
obtain a stable Z-R relation. Currently, the dynamic Z-R
relations algorithm is used for the radar QPE in China
(Wang et al. [13]; Chen et al. [21]). To further improve the
accuracy of radar QPE, the variational correction
method (Zhang et al. [22]) is applied to the operational
dynamic Z-R relations algorithm in Guangdong
Province.

In this paper, a total of 810 rain gauges that were
randomly chosen from half of the gauges in the coverage
of the Guangzhou radar volume scan were used.
Because this is a QPE algorithm for operational services
in Guangdong Province, the parameters a and b of Z =
a × Rb were time-averaged value before the period
considered in this study, i. e., before 00: 00 March 1,
2017. The starting values were 16 and 2.45.
Furthermore, the Z-R coefficients were refitted every 60
minutes and were used for the subsequent 6-min radar
QPE. From March 1 to October 30, 2017, the value of a
fluctuated between 16 and 250, and the value of b
fluctuated between 1.2 and 2.85.
3.4 Evaluation methods

The radar QPE results were evaluated using the
mean absolute error (AE), the average relative error
(RE), the ratio deviation (BIAS) and the root mean
square error (RMSE). These parameters are calculated
as:

AE =
1

n∑i = 1

n

||Gi - Ri , (5)

RE =

1

n∑i = 1

n |Gi - Ri|

1

n∑i = 1

n Gi

, (6)

BIAS =

1

n∑i = 1

n Ri

1

n∑i = 1

n Gi

, (7)

RMSE =
1

n∑i = 1

n

( Gi - Ri)
2 , (8)

where Gi denotes the 1-h observed rainfall of the i-th
rain gauge sample in the evaluation data set, Ri denotes
the 1-h estimated rainfall with radar, and n denotes the
number of effective QPE-rain gauge pairs.

Because the DRVC-QPE algorithm requires rain
gauges to correct retrieved rainfall rate, all of rain
gauges are divided nto two group; one is for correction
and the other is for evaluation. Because of the R ( ZH),
HCA-QPE, CSU-HIDRO, and JPOLE algorithms in this
study did not use the rain gauges rainfall for real-time

Table 4. The QPE estimator coefficients of the annually
second rainy season.

Estimators

R1(ZH)

R2(ZH)

R1 ( KDP)

R2 ( KDP)

R(ZH, ZDR)

R(KDP, ZDR)

Coefficient a

0.03966

0.0135

33.82

46.29

0.00892

60.5

Coefficient b

0.6246

0.7923

0.8678

0.8941

0.9078

0.9638

Coefficient c

−0.3573

−0.124

Estimators

R ( ZH)

R ( KDP)

R ( )ZH, ZDR

R ( )KDP, ZDR

Coefficient a

0.0082

32.2886

0.0047

52.656

Coefficient b

0.749

0.8991

0.9624

0.9721

Coefficient c

−0.3574

−0.0996

Table 5. The QPE estimator coefficients of the annually first
rainy season.

Table 6. The QPE estimator coefficients of the annually
second rainy season.

Estimators

R ( ZH)

R ( KDP)

R ( )ZH, ZDR

R ( )KDP, ZDR

Coefficient a

0.03966

35.69

0.01014

60.8

Coefficient b

0.6246

0.8376

0.9029

0.9516

Coefficient c

−0.3739

−0.1241
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correction, the evaluation station can simply be selected
from within a given distance range.

4 RESULT ANALYSIS

The QPEs with HCA-QPE, CSU-HIDRO, JPOLE,
and DRVD-QPE algorithms were performed for rainfall
events from March 1 to October 30, 2017 shown in
Table 2. The dual-polarization radar QPE capability is
evaluated in different rainfall levels and range from
radar site.
4.1 Error analysis of different precipitation intensities

In this analysis, the hourly rainfall measured by the
rain gauges can be divided into 5 levels, including 1-
5mm, 5-10mm, 10-20mm, 20-50mm, and 50mm and
above. Table 7 presents the results using the HCA-QPE,
CSU-HIDRO, JPOLE, DRVC-QPE, and R ( ZH)

algorithms for five rain fall levels.
Previous studies have demonstrated that the fixed

Z-R relationship R ( ZH) underestimated all types of

precipitation (Gou et al. [23]). Although the R ( )ZH is

fitted from local DSDs data in Guangdong, the QPE is
also underestimated. It can be observed from Table 7
that the maximum BIAS for R ( ZH) is 0.87. The BIAS
gradually declined with the rainfall rate. For a rainfall
rate >50mm h-1, the BIAS is only 0.49. The DRVC-QPE
algorithm considerably improved the underestimation
due to the corrections by rain gauge data. The BIAS
increased by 28.2% in total while the root-mean-square
error (RMSE) was reduced by 22.4% (1.79 mm).
However, for the 1-5mm h-1 rainfall rate, the DRVC-
QPE is overestimated (BIAS is 1.12) with large values
of RE and RMSE.

Table 7. The QPE evaluation results from March 1 to October 30, 2017.

Precipitation Estima‐
tion Algorithm

HCA-QPE

CSU-HIDRO

JPOLE

DRVC-QPE

R ( ZH)

Evaluation Method

RE (%)

AE (mm)

RMSE (mm)

BIAS

RE (%)

AE (mm)

RMSE (mm)

BIAS

RE (%)

AE (mm)

RMSE (mm)

BIAS

RE (%)

AE (mm)

RMSE (mm)

BIAS

RE (%)

AE (mm)

RMSE (mm)

BIAS

Hourly Rainfall (mm)

1-5

65.43

1.58

2.82

1.35

53.78

1.47

2.45

0.87

52.89

1.4

2.39

1.02

56.45

1.31

2.71

1.12

47.12

1.4

1.93

0.77

5-10

38.07

2.69

3.52

0.96

45.75

3.26

4.12

0.73

41.82

2.91

3.73

0.78

46.28

3.3

4.28

0.84

54.73

3.91

4.32

0.69

10-20

32.07

4.45

5.66

0.88

39.44

5.48

6.54

0.7

38.88

6.53

7.3

0.71

40.96

5.76

7.2

0.71

53.85

7.53

8.19

0.6

20-50

26.93

7.53

9.39

0.83

35.32

10.12

11.87

0.69

35.73

10.26

12.2

0.69

41.17

11.93

14.32

0.64

52.8

15.28

16.62

0.53

≥50

24.64

15.87

19.0

0.74

36.94

33.35

26.3

0.64

34.29

24.32

31.74

0.67

48.56

30.34

34.2

0.54

57.5

36.36

37.94

0.49

Average

47.99

3.19

5.19

0.93

49.92

3.94

6.28

0.71

48.85

3.83

6.18

0.75

50.15

3.31

6.22

0.78

50.96

5.03

8.01

0.56

Despite the fact that the HCA-QPE algorithm
proposed in this study did not use the rain gauges data to
correct the QPE results, the RE decreased by 4.3% on
average, the AE reduced by 3.6% (0.12 mm) on average,
and the RMSE declined 16.6% (1.03 mm) on average,
whereas BIAS increased by 16.1% on average as
compared with those obtained using the DRVC-QPE
algorithm. However, the HCA-QPE algorithm shows a
larger error as compared with that showed by the DRVC-
QPE algorithm when the rainfall rate was less than
5mm h-1, which was mainly due to overestimation (BIAS
being 1.35). When the rainfall rate is more than 5mm h-1,

the error of the HCA-QPE algorithm is evidently better
than that of the DRVC-QPE algorithm. As the
precipitation intensified, the accuracy improved even
more. At a strong rainfall rate (over 20mm h-1), HCA-
QPE has its RE, AE, and RMSE reduced by 34.5%,
36.9% (4.4 mm), 34.3% (4.93 mm), and BIAS increased
by 29.7% as compared to that of the DRVC-QPE
algorithm.

The localized CSU-HIDRO and JPOLE algorithms,
in the absence of the corrections by measured rainfall
data, still performed better than the DRVC-QPE
algorithm when rainfall rate is more than 5mm h-1;
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however, the rainfall rate of the localized CSU-HIDRO
and JPOLE algorithms are still underestimated. The
HCA-QPE algorithm proposed in this study showed the
least error as compared with that by other algorithms for
rainfall rates more than 5mm h-1; furthermore, the higher
the rainfall rate, the better the performance. Additionally,
the HCA-QPE algorithm considerably improved the
underestimation that was observed in other algorithms.
4.2 Error variation with distances

The U.S. National Weather Service (NWS) requires
its S-band dual-polarization radar QPE to cover a region
of 230km around the radar (Ryzhkov et al.[24]). Although
we did not explicitly regulate the coverage distance, the
CINRAD-SA radar products generally cover 230km for
the networking between multiple radar products.

Because the CINRAD-SA dual polarization radars
show a minimum scan elevation angle of 0.5° , the
vertical height increases as the horizontal distance from
the radar increases. Due to the increase in precipitation
or evaporation, the movement of airflow, the phase
change of particles, and so on, the radar observation will
be altered in the vertical direction. This shift will
increase with horizontal distance from the radar and with

vertical distance from the ground (Shi et al. [25]).
In the melting layer, the reflectivity factor, may be

5-10dB higher inside the bright-band due to melting,
collision, and slow falling speed of the snowflakes (Dai
et al. [26]). Majority of the hydrometeor above the
melting layer would be dry snowflakes and ice crystals
with weak backscattering, which causes a decrease in
the reflectivity factor and the differential reflectivity.
Especially in the heights above the melting layer, the
radar SNR is observed to be generally small. All the
aforementioned reasons will cause the QPE results to
alter with distance.

To analyze the variation characteristics of error
with distance in the HCA-QPE, CSU-HIDRO, and
JPOLE algorithms, this study categorized the automatic
stations in the radar coverage into 9 groups at a 25-km
interval with the furthest being 225km. Radar QPE was
conducted for various types of precipitation from March
1 to October 30, 2017 at each distance range. BIAS and
RMSE were further calculated over each distance range.
Fig. 3 depicts the variation of BIAS and RMSE along
the distance ranges of the three optimization algorithms.

Figure 3. BIAS (a) and RMSE (b) of the three optimization algorithms with range.

The observed facts from the sounding data of 2017
(59280) indicate that the height of the 0 °C-layer during
the rainy seasons in Guangdong is 3-5.5km. Based on
the assumption of the standard atmosphere, the
calculated horizontal distance range corresponding to the
0 ° C-layer at an elevation angle of 0.5° should be
approximately 160-236km. By considering its thickness
(Gatlin et al. [27]; Emory et al. [28]), the melting layer may
have an impact at a horizontal distance of ≥125km.

As depicted in Fig. 3, the radar QPE estimation
results of the three optimization algorithms are smaller
than the actual results (BIAS less than 1) in the range of
0-225km. The HCA-QPE algorithm is better than the
other two optimization algorithms (minimum RMSE)
across all the distance ranges. The three optimization
algorithms perform an even better estimation in the
range of 50-125km than in other ranges. That is

because the influence of the grounding and melting
layers on the echo is small and the QPE results are
mainly affected by the distribution of raindrops and hail.

As the horizontal distance extends to approximately
125km, the radar QPE results begin to be affected by the
melting layer. Based on the results of this study, the
three radar QPE optimization algorithms did not show a
consistent increase in and above the melting layer. There
is a certain fluctuation from 125km to 200km. Beyond
200km, the altitude is close to the top of the melting
layer and the majority of the hydrometeors above the
melting layer comprises dry snowflakes and ice crystals
with a weak backscattering effect. This would induce a
decrease in the reflectivity and the differential
reflectivity. Because the specific differential propagation
phase reduces while passing through the non-liquid
region, the estimation results tend to be small. In any
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case, it can clearly be observed from Fig. 3b that the
RMSE of the three optimization algorithms increases
rapidly while reaching the melting layer or beyond,
indicating that the existence of the melting layer reduces
the accuracy of QPE.

5 CASE STUDY

During May 14-16, 2017, Guangdong experienced
a large-scale heavy rain because of the influence of the
westerly trough and the lower shear line. The
precipitation was concentrated in the Pearl River Delta,
where the hourly rainfall was mostly distributed in a
strip shape. The precipitation shows the characteristics
of large area and strong intensity. Short-term strong
precipitation was recorded by multiple stations within
the 20-100km range of the Guangzhou radar, and the
maximum hourly rainfall rate became 119.1mm h-1.

Based on the error results, all the three optimization
algorithms presented better evaluation results as
compared with those presented by the DRVC-QPE and
R ( ZH) algorithms when the rain rate became >
10mm h-1in this precipitation event. Among the three
optimal combination algorithms, HCA-QPE was the best
algorithm with an average RE of 40.17%, AE of 2.68
mm, RMSE of 4.75 mm, and BIAS of 0.84.

From the perspective of spatial distribution, there

were two rainfall belts in the central and southern
Guangdong at 01: 00 on May 16, 2017. All the
algorithms showed an ability to describe the main
features of precipitation in spatial distribution. The
DRVC-QPE algorithm requires segregation of gauges
for corrections and gauges for evaluation, and the QPE
value of the gauges participating in the correction of the
service is the same as the measured rainfall value from
the rainfall gauges. Therefore, this algorithm showed the
best correspondence in precipitation maxima and most
of the precipitation spatial distribution (Fig. 4c) with the
measured rainfall from the rain gauges (Fig. 4a). The
other algorithms, as can be observed, showed smaller
estimation than that showed by the measured rainfall in
the strong precipitation area. Apart from the DRVC-QPE
algorithm, the HCA-QPE algorithm is the most ideal for
the spatial distribution of precipitation (Fig. 4f). In
addition, this study also provides an hourly precipitation
distribution map for typhoon landing (Fig. 5). As can be
observed from the figure, the precipitation showed
obvious regional characteristics, and the results of each
radar QPE algorithm can also reflect the basic
distribution characteristics of precipitation. Except for
the DRVC-QPE algorithm, the results of all the other
algorithms are weaker than the measured rainfall.

Figure 4. Hourly rainfall of the gauge and radar QPE by various algorithms at 01:00 May 16, 2017.
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Figure 5. Hourly rainfall of the gauge and radar QPE by various algorithms at 13:00 August 23, 2017.
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As revealed from Fig. 6, the error of R ( ZH) is
mainly caused by the underestimation improved by the
DRVC-QPE algorithm at all levels of rainfall rate, but
there are still a good number of stations that could not be
well corrected. It can also be observed that the common

feature of the algorithms is the underestimation as the
rainfall rate increases, which is consistent with the BIAS
analysis in Table 7. And the HCA-QPE algorithm has
considerably eliminated underestimation; however, the
error remains in different rainfall rates.

Figure 6. Probability density plots of hourly radar-gauge rainfall accumulation on 08:00 May 14 to 08:00 May 16, 2017. (a) R(ZH),
(b) DRVC-QPE, (c) CSU-HIDRO, (d) JPOLE, and (e) HCA-QPE.

6 CONCLUSION

This study proposed the HCA-QPE for Guangdong
region. Based on the quality control and data processing
of observation data, the HCA-QPE algorithm, the
localized CSU-HIDRO and JPOLE algorithms, and the
DRVC-QPE algorithm currently operating in
Guangdong were applied to rainfall estimation. The
results were analyzed in different rainfall rate, and the

influence of the radar upgrade on service QPE was
discussed. Furthermore, the error characteristics of the
optimization algorithm at various distances from the
radar were evaluated. Thus, the following conclusions
can be drawn.

(1) Although the HCA-QPE algorithm did not use
the real-time gauge-measured rainfall data for
correction, its estimation accuracy was worse than that
of DRVC-QPE only when the rainfall rate was smaller
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than 5mm h-1. As the rainfall rate increased, the accuracy
of HCA-QPE became better than that of DRVC-QPE. In
addition, we found that the greater the rainfall rate, the
greater the improvement in estimation accuracy.
Furthermore, the estimation accuracy of the HCA-QPE
algorithm was better than that of the CSU-HIDRO and
JPOLE algorithms.

(2) The HCA-QPE algorithm performed best in all
distance ranges from the radar. The optimal performing
distance range for the three optimization algorithms was
50-125 km. The estimation accuracy of the three
algorithms decreased at a distance greater than 125 km,
mainly due to the melting layer, loss of radar sensitivity,
beam broadening and beam overshoot precipitation.

Improving the accuracy of radar QPE is a
prerequisite for improving the accuracy of heavy rain
forecasting. The HCA-QPE algorithm in this study is not
ideal in estimating light rainfall, but is getting better in
case of heavier rainfall. However, there are still many
unresolved problems for HCA-QPE algorithm that
requires further studies, such as the reasons why the
error oscillates with increasing distance and how to
improve the estimation accuracy of HCA-QPE algorithm
in light rain, and so on.
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Appendix
Table 2. Rainfall events from March 1 to October 30, 2017.

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Date and Time (China Standard Time)

07:00 March 7 to 12:00 March 8

05:00 March 9 to 20:00 March 10

04:00 March 11 to 11:00 March 12

01:00 March 18 to 23:00 March 19

00:00 to 21:00 March 22

21:00 March 28 to 13:00 March 29

00:00 March 31 to 01:00 April 1

08:00 to 23:00 April 11

16:00 to 23:00 April 12

10:00 April 19 to 02:00 April 20

10:00 April 20 to 20:00 April 21

08:00 April 22 to 23:00 April 23

20:00 April 24 to 07:00 April 27

18:00 to 23:00 May 2

04:00 to 11:00 May 4

00:00 to 20:00 May 7

16:00 to 23:00 May 8

07:00 to 12:00 May 12

17:00 May 14 to 06:00 May 16

15:00 to 21:00 May 21

18:00 to 23:00 May 23

06:00 to 13:00 May 24

09:00 to 15:00 June 9

02:00 to 13:00 June 14

18:00 June 15 to 13:00 June 18

12:00 to 17:00 June 19

10:00 to 22:00 June 20

13:00 to 22:00 June 21

12:00 to 19:00 June 23

00:00 July 2 to 16:00 July 4

12:00 to 18:00 July 5

10:00 to 18:00 July 6

12:00 to 20:00 July 8

12:00 to 17:00 July 10

08:00 to 18:00 July 11

13:00 to 21:00 July 13

14:00 July 15 to 03:00 July 19

10:00 to 20:00 July 19

13:00 to 20:00 July 21

00:00 July 23 to 01:00 July 24

17:00 August 1 to 17:00 August 2

09:00 to 19:00 August 3

10:00 to 15:00 August 11

13:00 August 22 to 22:00 August 24

17:00 August 26 to 19:00 August 28

05:00 to 23:00 September 4

11:00 September 5 to 00:00 September 6

08:00 to 17:00 September 7

14:00 to 19:00 September 21

13:00 to 18:00 September 29

17:00 October 15 to 20:00 October 16

Duration (h)

29

39

31

46

21

14

25

15

7

16

34

39

59

5

7

20

7

5

37

6

5

7

6

11

65

5

12

9

7

64

6

8

8

5

10

8

85

10

7

25

24

10

5

57

50

18

13

9

5

5

27

Precipitation Type

Stratus

Stratus

Stratus

Stratocumulus

Stratus

Stratocumulus

Stratocumulus

Stratocumulus

Stratocumulus

Stratocumulus

Stratocumulus

Stratus

Stratocumulus

Convective Clouds

Stratocumulus

Stratocumulus

Stratocumulus

Convective Clouds

Stratocumulus

Stratocumulus

Convective Clouds

Stratocumulus

Stratocumulus

Stratocumulus

Stratocumulus

Convective Clouds

Stratocumulus

Stratocumulus

Stratocumulus

Stratocumulus

Convective Clouds

Convective Clouds

Convective Clouds

Convective Clouds

Convective Clouds

Convective Clouds

Stratocumulus

Stratocumulus

Convective Clouds

Stratocumulus

Convective Clouds

Convective Clouds

Convective Clouds

Stratocumulus

Stratocumulus

Stratocumulus

Convective Clouds

Convective Clouds

Convective Clouds

Convective Clouds

Stratocumulus
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