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Abstract: Based on the GRAPES-MESO hybrid En-3DVAR  (Ensemble three-dimension hybrid data assimilation for
Global/Regional Assimilation and Prediction system) constructed by China Meteorological Administration, a 7-day
simulation (from 10 July 2015 to 16 July 2015) is conducted for horizontal localization scales. 48h forecasts have been
designed for each test, and seven different horizontal localization scales of 250, 500, 750, 1000, 1250, 1500 and 1750
km are set. The 7-day simulation results show that the optimal horizontal localization scales over the Tibetan Plateau
and the plain area are 1500 km and 1000 km, respectively. As a result, based on the GRAPES-MESO hybrid
En-3DVAR, a topography-dependent horizontal localization scale scheme (hereinafter referred to as GRAPES-MESO
hybrid En-3DVAR-TD-HLS) has been constructed. The data assimilation and forecast experiments have been
implemented by GRAPES-MESO hybrid En-3DVAR, 3DVAR and GRAPES-MESO hybrid En-3DVAR-TD-HLS, and
then the analysis and forecast field of these three systems are compared. The results show that the analysis field and
forecast field within 30h of GRAPES-MESO hybrid En-3DVAR-TD-HLS are better than those of the other two data
assimilation systems. Particularly in the analysis field, the root mean square error (RMSE) of ©_wind and v_wind in the
entire vertical levels is significantly less than that of the other two systems. The time series of total RMSE indicate, in
the 6-30h forecast range, that the forecast result of En-3DVAR-TD-HLS is better than that of the other two systems, but
the En-3DVAR and 3DVAR are equivalent in terms of their forecast skills. The 36-48h forecasts of three data
assimilation systems have similar forecast skill.
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1 INTRODUCTION

In current research and practice, the main methods
of data assimilation are three dimensional variational data
assimilation (hereinafter referred to as 3DVAR) (Parrish
and Derber™; Rabier et al.”?; Barker et al.”’) and Ensemble
Kalman Filter data assimilation (hereinafter referred to as
EnKF) (Anderson; Whitaker and Hamil®; Snyder and
Zhang"®; Tong and Xue; Zhang et al.®™¥; Torn et al.”);
Meng and Zhang""; Zhang et al.'l). They both have
advantages and disadvantages. 3DVAR breaks the limit
of liner relationship between observational variables and
analysis variables compared to previous methods, making
it possible to use a variety of unconventional observations
(radar and satellite, etc.) to improve the quality of
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numerical predictions. However, it wusually uses
climate-statistics-based, uniform, and isotropic
background error covariance information, which ignores
the stream-dependent properties of background error
covariance. It cannot accurately describe the forecast
errors when weather situation changes. EnKF uses the
Monte-Carlo sampling method to obtain ensemble
forecasts to get the stream-dependent background error
covariance. It uses the optimal estimation method to
update ensemble forecast, and then evolves the covariance
of the stream-dependent background errors over time by
the ensemble forecast perturbation. Although this method
has advantages over 3DVAR, it computational cost is
higher. Therefore, some scientists proposed a new
method-hybrid data assimilation method, which combines
the advantages of these two methods.

In the recent decade, hybrid data assimilation has
become a widely-researched topic (Hamill et al. !
Wang!*'%;, Wang et al.'; Clayton et al.'¥l; Courtier et
al."; Buehner®; Wang et al.?") in the data assimilation
field. It has achieved some encouraging results and
promises future research potential. Many researchers have
already done a great deal of work based on hybrid
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3DVAR data assimilation. Using the low-resolution
quasi-geostrophic model, Hamill, Snyder and Whitaker
coupled the covariance of climatic statistical background
error and the covariance of ensemble estimated
background error through a linear combination method,
for the first time to construct an EnKF-3DVAR hybrid
data assimilation system™?. In 2003, Lorenc discussed
how to apply the ensemble estimate background error
covariance to the 3DVAR frame by extending control
variable method™. In 2005, Buehner further discussed
how to apply the ensemble estimation background error
covariance to the 3DVAR framework by extending
control variable method™. In 2007, Wang et al. proved
that extending control variable method and linear
combination method are theoretically equivalent™. At the
same time, hybrid data assimilation schemes based on
four-dimensional variances have also been greatly
developed (Liu et al.®™); Buehner et al.®*"). In recent
years, research on the hybrid data assimilation has won
great scholar attention in China (Ma et al.®?**; Zhang et
al.P¥; Zhu et al.®; Shen et al.’). Chen et al.®" utilized
GRAPES-MESO 3DVAR data assimilation system and
GRAPES-MESO ensemble forecasting system (Chen et
al. B, Zhang et al. P**) to construct GRAPES-MESO
hybrid En-3DVAR data assimilation system and
conducted some experiments. The experimental results
showed that when the ensemble estimation background
error covariance is introduced to the GRAPES-MESO
3DVAR system, the quality of data assimilation in the
analysis field and forecast field of GRAPES-MESO
system can be improved, with more obvious
improvements in areas with sparse observations.

EnKF usually uses fewer members to estimate
ensemble background error covariance, which will
produce abnormal correlations when the distance between
these two grids are relatively far away. It underestimates
the background error covariance, and weakens the effect
of the observations, eventually leads to filter diverging.
This is due to the sampling error of ensemble forecast.
Houtekamer and Mitchell first discovered that the result
of EnKF can be improved without using long-range grids
observations™. Therefore, localizing the ensemble
background error covariance is the main method to solve
this problem. Houtekamer and Mitchell used “Schur
product” and a distance-dependent function when
estimating the ensemble covariance, and found that there
was a significant improvement in analysis errors 2.
Gaspari and Cohn discussed how covariance localization
improved the ensemble analysist™!. Ott et al. proposed and
improved LEKF (Local Ensemble Kalman Filter)
localization scheme™*!. Hunt et al. proposed the LETKF
(Local Ensemble Transform Kalman Filter) scheme
based on the work of Ott et al.™*I which improved
the computational efficiency. Miyoshi et al. pointed out
that LETKF can be more flexible than LEKF in choosing
observations . Szunyogh et al. used a parallel GIS
(Geographic Information System) system to test the

accuracy and computational efficiency of LETKF ™,
There are relatively few studies on the covariance
localization in China (Liu and Min™)). China is a country
with complex terrain. The sparse observation data and
special terrain over the Tibetan Plateau have seriously
affected the quality of data assimilation in these areas.
Besides, in the data assimilation system, the horizontal
localization scale is an important parameter which
determines the transmission distance of the observation
information. Therefore, the horizontal localization scales
in the Tibetan Plateau should not be the same as the
plains, which have more intensive observations.

In this paper, based on GRAPES-MESO hybrid
En-3DVAR data assimilation system constructed by
China Meteorological ~Administration, the 7-day
simulations have been implemented to verify the optimal
horizontal localization scales between Tibetan Plateau
and plains in the forecast area. Based on the results of the
7-day simulations, we designed and constructed a
topography-dependent horizontal localization scales
method (only for ensemble background error covariance)
based on GRAPES-MESO hybrid En-3DVAR data
assimilation system (GRAPES-MESO hybrid
En-3DVAR-TD-HLS), and then compared the
improvement over GRAPES-MESO hybrid En-3DVAR
and GRAPES-MESO 3DVAR systems. In this paper, only
radiosonde, surface observations and ship observations
were assimilated in those experiments. The spatial
distribution of these observations is shown in Fig. 1.

Section 2 details the GRAPES-MESO hybrid
En-3DVAR and GRAPES-MESO-TD-HLS  hybrid
En-3DVAR data assimilation system. The experiment
designs are presented in section 3, and the results of
cycled En-3DVAR, 3DVAR, and En-3DVAR-TD-HLS
approach are presented in section 4. Conclusions are
given in section 5.

2 THE GRAPES-MESO HYBRID EN-3DVAR-
TD-HLS

2.1  GRAPES -MESO hybird En -3DVAR daia
assimilation system

The GRAPES-MESO hybrid En-3DVAR data
assimilation system (resolution: 0.15°x0.15°) is cycled
with time as shown in Fig. 2, with each cycle consisting
of the following steps:

1) The ensemble forecasting perturbations are
updated from GRAPES-MESO ETKF system by a 12h
forecast with 14 ensemble members, and then ensemble
background error covariance are generated by the
ensemble forecasting perturbations through extended
control variable method !, The generation of ensemble
background error covariance is as follows:

x, =(x~x)/VK=1 (1)
P= ) @)

where xz is the normalized ensemble perturbation which
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Figure 1. The spatial distribution of the observations. Solid point for surface observation, hollow cycle for radiosonde and plus for
ships.
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Figure 2. Schematic diagram of the GRAPES-MESO hybrid En-3DVAR analysis-forecast cycle.
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is taken from the 12h forecast of GRAPES-MESO
ETKF system, x, is the kth ensemble forecast, x is the
ensemble mean, K is the ensemble size, and P/‘, is the

ensemble background error covariance.

Because of the limited ensemble size, the ensemble
background error covariance is low rank, and will lead
to unreasonable correlation between variables in
practical application F7;  therefore, we need to

localize the Pi as follows:

K

B, =P o=, (x,(x,)oC (3)

k=1
where C is the localization matrix whose size is equal to

P f, o is the Schur product.

e

2) The static background error covariance is
provided by the NMC method.

3) The boundary conditions and background data
are generated by the global 12h forecasts of T639.

4) The data from 1) and 2) are combined with
observational data, and then a 48h data assimilation and
forecast experiment is conducted by wusing hybrid
En-3DVAR system.

2.2 Theoretical formula

The hybrid data assimilation scheme can be
achieved by using the method of extending control
variables to combine the ensemble estimated and
climate-statistics-based background error covariance.
The cost function can be explained as follows:
where «' is the analysis increment, B, and B, are defined

J(& =;f(x')T(/34,Bc +B.B)" (') + ;—(qurd)TR*1 (Hx'+d) 4)

as  climate-statistics-based and  ensemble-estimate
background error covariance, respectively. H is the
operator mapping the model space to the observation
space, and d=H (xb)-y denotes the innovation vector.
B. and B, are two factors defined as the weights of

climate-statistics-based and ensemble-estimate
background with the following relationship:
2 2
B.+B.=1 (%)

The state variables are velocity potential, stream
function, humidity variable (relative humidity or specific
humidity) and dimensionless pressure in these three data
assimilation systems. Except for humidity variable
(because the humidity field has too much uncertainty in
GRAPES), the remaining state variables use the same
horizontal localization scale in this paper. For
mathematical details of the GRAPES-MESO based
hybrid En-3DVAR system, readers can refer to Chen et
al.P".

23 The GRAPES -MESO -TD -HLS hybrid daia
assimilation system

The horizontal localization scale in the
GRAPES-MESO En-3DVAR system is the same
throughout the three-dimensional grid space of the
experiment area, but some experiments found that the
optimal horizontal localization scales are different
between complex terrain areas (such as the Tibetan
Plateau) and plain areas. Therefore, this paper selected
e-index function as the basic function, and constructed a
topography-dependent horizontal localization scales
scheme (it does not change with the vertical level). The
concrete realization is as follows:

—(Zmax-zz(i, j))/u’2

e_index(i, j)=e (6)

Loc(i, j)=e_index(i, j) * L (7
where Zmax is the highest point of the terrain (this
paper uses 5500m as Zmax), zz (i, j) is the height of the
terrain at grid (i, j), o is the morphological index, and
the value of e_index ranges from 0 to 1. L is the default
localization  scale  of the  original  system

(GRAPES-MESO 3DVAR and GRAPES-MESO hybrid
En-3DVAR).

Loc (i, ) is the new horizontal localization scale at
the grid (i, j) after the TD-HLS method. The value of
e_index(i, j) can be obtained by Zmax, zz(i, j) and o. As
a result, different horizontal localization scales on
different grids can be achieved.

Figure 3 is the curve of e _index graphed against
the height of the terrain under different morphological
index (the values of the morphological indexes are 100,
150, 200 and 250). With the same o, the e index
decreases as terrain height decreases. When o is
smaller, e_index decreases at a higher rate.

3 EXPERIMENT DESIGN

3.1 The 7 —day simulations of horizontal localization
scale

To explore the impact of horizontal localization
scale on GRAPES-MESO hybrid En-3DVAR data
assimilation system under different topographical
conditions, we conducted a test over the Tibetan Plateau
(70°E to 105°E, 25°N to 40°N) and the plain area
(105°E to 145°E, 15°N to 40°N). The test lasted for 7
days from 10 July 2015 to 16 July 2015. We set seven
different horizontal localization scales of 250, 500, 750,
1,000, 1,250, 1,500 and 1,750 km, and then ran the
GRAPES-MESO hybrid En-3DVAR data assimilation
system and calculated the total RMSE (7-day average)
of the analysis and forecast fields in these two areas.
The T639 (resolution 0.28125°%x0.28125°) analysis data
were used as the real atmospheric state to verify these 7
days simulations’ result.
3.2 Data assimilation and forecast experiments by three
systems

The experiment of data assimilation and 48h
forecasts which began at 0000 UTC 12 Jun 2015 was
carried out by 3DVAR, GRAPES-MESO En-3DVAR,
and GRAPES-MESO En-3DVAR-TD-HLS. The details
are described in Table 1. The forecast domain is 15°N
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to 64.35°N, 70°E to 145.15°E, and resolution is 0.15°x
0.15°. The 12h forecast of the T639 global prediction
system was used as background fields. The lateral

En-3DVAR contains the Betts-Miller-Janjic cumulus
convection parameterization scheme, the MRF planetary
boundary layer parameterization scheme, the Noah land

boundary conditions were also provided by T639 global surface  process  parameterization  scheme, the
prediction system. Only conventional observations Monin-Obukhov planetary boundary layer
(surface observation, radiosonde and ships) were used in parameterization scheme, the Dudhia short-wave
these experiments. The T639 (resolution 0.28125° x radiation  parameterization scheme, the RRTM

0.28125° ) analysis data were used as the real
atmospheric state to verify these three systems’ data
assimilation and forecast results. The GRAPES-MESO

long-wave radiation parameterization scheme, and the
WSM6 micro-physical process parameterization scheme.

4 EXPERIMENT RESULTS
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Figure 3. The curve of e_index changed with the height of the terrain which under different morphological index (the
morphological indexes are 100, 150, 200 and 250).

Table 1. Details of three data assimilation experiments.

Name B. and B, scheme
3DVAR none The conventional observations are assimilated via GRPES-MESO
3DVAR system. The static background covariance is re-calculated via
NMC method. The 12h forecast of the T639 global prediction system was
used as background fields.
En-3DVAR B.=0.5 and B,=0.5 Compared to the 3DVAR,the ensemble covariance was added to the

3DVAR frame by extending control variable method, and the other
options are the same as 3DVAR.
The same as En-3dvar,but with TD-HLS method.

En-3DVAR-TD-HLS B=0.5 and §,=0.5

4.1 The result of 7—day simulations

Figure 4 shows the total RMSE (7-day average
from 10 to 16 June 2015) of u_winds and and v_winds
over the plain and the Tibetan Plateau. As can be seen
from Fig. 3, when the horizontal localization scale is
1500 km, the RMSE of « wind and » wind over the
Tibetan Plateau is the smallest. Compared to the

Tibetan Plateau, the optimal horizontal localization scale
over the plain is 1,000 km, the temperature and height
are insensitive to horizontal localization scale, so we
will not discuss them in details. This shows that under
different topographic conditions, the optimal horizontal
localization scale is different. In GRAPES-MESO
En-3DVAR system, the horizontal localization scales in
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the three-dimensional grid space have the same value,
which is not consistent with the results of the 7-day
simulations. Therefore, this paper constructed the
topography-dependent  horizontal localization scale
method, which is based on the GRAPES-MESO hybrid
En-3DVAR data assimilation system (GRAPES-MESO
hybrid En-3DVAR-TD-HLS). As the optimal horizontal
localization scales of the Tibetan Plateau and the plain
area is 1,500 km and 1,000 km respectively, we set L
(in formula 4) to 1,500 km. Corresponding to Fig. 2,
when o is equal to 100, the horizontal localization scale
over the plain area is about 1,000 km. This setting is
consistent with the results of 7-day simulations.
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Figure 4. Time series of total RMSE of 7 days simulations with different horizontal localization scale for

Figure 5 is the horizontal distribution of Loc (i, j)
under different terrain (o~ equal to 100). As can be seen,
the higher the terrain, the larger the horizontal
localization scale. Over the plain area, the horizontal
localization scale is about 1,000 km, and over the
Tibetan Plateau the scale it is about 1,500 km. When
the terrain is steeper, the horizontal localization scale
becomes larger. It is consistent with the 7-day
simulations result. Thus the ¢ used in the following
experiments is 100.

4.2 Data assimilation and forecast results of the three
systems
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(a) u_wind over the

plain, (b) v_wind over the plain , (¢) u_wind over the Tibetan Plateau, and (d) v_wind over the Tibetan Plateau.
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Figure 5. Horizontal distribution of Loc(i, j) over different terrain. o is equal to 100. The shaded region highlights the height of the

terrain and the contours highlight the horizontal localization scale.

To verify the result of GRAPES-MESO
En-3DVAR-TD-HLS, the data assimilation and forecast
experiments have been conducted by using 3DVAR,
GRAPES-MESO En-3DVAR, and GRAPES-MESO
En-3DVAR-TD-HLS. Fig. 6 shows the results of the
horizontal analysis increment of u« wind with one
single-point pressure observation experiment, the point
is at the plain (42°N, 117°E) and Tibetan plateau (35°N,
90° E) with the model level of 13. Fig. 6a and 6b
represents the single-point  pressure  observation
experiment over the plain, and we can see that the
shape and structure of the u wind analysis increment
for En-3DVAR-TD-HLS and En-3DVAR are roughly
the same. However, the range of u wind analysis
increment of GRAPES-MESO En-3DVAR-TD-HLS
system is significantly less than that of GRAPES-MESO
En-3DVAR, with the value in the center significantly
greater than the latter. This means that the transmission
distance of observational information by
GRAPES-MESO En-3DVAR-TD-HLS over the plain
area is smaller than that of GRAPES-MESO
En-3DVAR, which can better reflect small and medium
weather systems. The u wind analysis increment of
GRAPES-MESO En-3DVAR-TD-HLS is also smoother
than that of the GRAPES-MESO En-3DVAR: the small
perturbation of wu wind analysis increment s
significantly less than that of GRAPES-MESO
En-3DVAR. The analysis increment of v winds,
temperature, and non-dimensional pressure are like that
of u_wind. The difference of analysis increment of the
two systems over the Tibetan Plateau is not significant

(Fig. 6¢ and 6d), it means that, over the Tibetan plateau,
the horizontal localization scales between these two
hybrid data assimilation systems have little difference.
The above results show that the GRAPES-MESO
En-3DVAR-TD-HLS scheme can achieve the result of
the horizontal localization scale over the plain areas,
which is smaller than that over the Tibetan Plateau.

Figure 7a and 7b illustrates the vertical profile of
RMSE for analysis field of 3DVAR, GRAPES-MESO
En-3DVAR and GRAPES-MESO En-3DVAR-TD-HLS
data assimilation systems. The trend of the vertical
profiles of these three data assimilation systems is
basically similar. The maximum RMSE of « wind and
v_wind appeared in 200-300 hPa and top of the model
layer. However, the RMSE of GRAPES-MESO
En-3DVAR-TD-HLS is obviously less than that of
3DVAR and En-3DVAR at all levels. The RMSE of
temperature and geopotential height differ slightly
among these three data assimilation systems, so we will
not discuss them in details.

Figure 8a and 8b is the vertical RMSE profile for
6h forecast of u_wind and » wind, respectively, of the
three data assimilation systems. Like the analysis fields
in Fig. 7, the trend of the vertical RMSE profiles of the
three data assimilation systems is basically the same.
However, in Fig. 8, the difference in the RMSE
between the three systems is reduced. Below 600 hPa
level, the RMSE of GRAPES-MESO
En-3DVAR-TD-HLS and 3DVAR are not much
different, but it is slightly smaller than that of
GRAPES-MESO En-3DVAR, while above 600 hPa
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level, GRAPES-MESO  En-3DVAR-TD-HLS s
significantly better than the other two systems. Fig. 8c
and 8d is the vertical RMSE profile for 12h forecast of
u_wind and v _wind, respectively, of the three data
assimilation systems. As can be seen, the differences in
the RMSE between the three systems has been further
reduced. Between 800 to 1,000 hPa, 3DVAR system is
the smallest; above 800 hPa, the RMSE of
GRAPES-MESO En-3DVAR-TD-HLS is significantly
smaller than that of the other two systems; above 600
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hPa, the 12h forecast results of both GRAPES-MESO
En-3DVAR and GRAPES-MESO En-3DVAR-TD-HLS
are better than that of 3DVAR. Overall, in the 6-24h
forecasts, the RMSE of GRAPES-MESO
En-3DVAR-TD-HLS are smaller than those of 3DVAR
and GRAPES-MESO En-3DVAR. From 30 to 48h,
these three data assimilation systems have similar
results.

Figure 9 is the time series of total RMSE for 48h
forecast of u wind and » wind of the three data
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Figure 6. The results of the horizontal analysis increment of u_wind with a single-point pressure observation experiment over the
plain (42°N, 117°E) and Tibetan Plateau (35°N, 90°E) with model level of 13. a) En-3DVAR-TD-HLS, b) En-3DVAR over the
plain, ¢) En-3DVAR-TD-HLS and d) En-3DVAR over the Tibetan plateau.
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assimilation systems. We can see that, in the 6-30h
forecasting period, the forecast of GRAPES-MESO
En-3DVAR-TD-HLS system is obviously better than
that of the other two systems, with GRAPES-MESO
En-3DVAR and 3DVAR having similar forecast skills.
These three data assimilation schemes have the same
result for the 36-48h forecasts.

The above experiments showed that the
GRAPES-MESO En-3DVAR-TD-HLS system can
improve the quality of GRAPES, and the
topography-dependent  horizontal localization scale
method is reasonable and effective.

5 CONCLUSIONS

Based on the hybrid En-3DVAR assimilation
system established by the National Meteorological
Center, the 7-day simulations were conducted to obtain
the optimal horizontal localization scale. With the
results of 7-day simulations based on the
GRAPES-MESO  hybrid En-3DVAR  assimilation
system, we constructed a horizontal localization scale
scheme which depends on topography. Data assimilation
and forecast experiments of GRAPES-MESO
En-3DVAR, 3DVAR and GRAPES-MESO
En-3DVAR-TD-HLS have been conducted. The results
are obtained as follows:

(1) The 7-day simulations results showed that over
the Tibetan Plateau the optimal horizontal localization
scale is 1,500 km, and over the plain area the optimal
scale is 1,000 km. The reason for this result might be
due to the data assimilation system needing a large
horizontal localization scale to transfer the observation
information to cover the Tibetan plateau, which have
complex terrain and sparse observations.

(2) After constructing the topography-dependent
horizontal localization scheme, we found that o
equaling to 100 satisfied the results of (1).

(3) Vertical profile of RMSE shows that the
analysis field, for the 6h to 24h forecasting period, the
GRAPES-MESO En-3DVAR-TD-HLS is better than
that of the other two assimilation systems. In particular,
the RMSE is significantly less than that of the other two
systems across the vertical level in the analysis field.

(4) The time series of total RMSE for 48h forecast
shows that, for the 6h to 30h forecasts,
GRAPES-MESO En-3DVAR-TD-HLS is significantly
better than the other two systems, with GRAPES-MESO
En-3DVAR and 3DVAR having similar performance.
The total RMSE of the three data assimilation systems
in 36-48h is almost the same.

As an initial attempt to apply the
topography-dependent  horizontal localization scale
method to the GRAPES-MESO En-3DVAR data
assimilation system, we conducted some experiments by
3DVAR, GRAPES-MESO En-3DVAR, and
GRAPES-MESO En-3DVAR-TD-HLS data assimilation
system. Although GRAPES-MESO

En-3DVAR-TD-HLS has some encouraging results with
localization scale varying in horizontal direction, the
horizontal localization scale changing with height needs
to be considered in the future. In this paper, only
conventional observations were used in these
experiments, the unconventional observations, such as
radar and satellite data will be implemented in our next
study.
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