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Abstract: To solve the problem of mesoscale analysis error accumulation after a period of continuous cycle data
assimilation (CCDA), a blending method and a constraining method are compared to introduce global analysis
information into the Global/Regional Assimilation and Prediction Enhanced System mesoscale three-dimensional
variational data assimilation system (GRAPES-Meso 3DVar). Based on a spatial filter used to obtain a blended analysis,
the blending method is weighted toward the T639 global analysis for scales larger than the cutoff wavelength of 1,200
km and toward the GRAPES mesoscale analysis for wavelengths below that. The constraining method considers the
T639 global analysis data as an extra source of information to be added in the 3DVar cost function. The cloud-resolving
GRAPES-Meso system (3 km resolution) with a 3 h analysis cycle update is chosen, and forecast experiments on an
extreme precipitation event over the eastern part of China are presented. The comparison shows that the inclusion of
large-scale information with both methods has a positive impact on the regional model, in which the 3 h background
forecasts are slightly closer to the radiosonde observations. The results also show that both methods are effective in
improving large-scale analysis while reserving the well-featured mesoscale information, leading to an enhancement in
the balance and accuracy of the analysis. Subjective verification reveals that the introduction of large-scale information
has a visible beneficial impact on the forecast of precipitation location and intensity. The methodologies and
experiences presented in this paper could serve as a reference for ongoing efforts toward the development of multi-scale
analysis in GRAPES-Meso.
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1 INTRODUCTION

The simultaneous assimilation of broadly distributed
observations to generate a mesoscale analysis that reflects
many scales of atmospheric motion is desired, and a
multi-scale data assimilation method is needed. However,
a higher resolution cloud-resolving limited area model
(LAM) provides a better representation of mesoscale to
small-scale phenomena, whereas larger scales are not
well specified in an LAM analysis compared with the
hosting global model analysis (Berre™). For mesoscale
continuous cycle data assimilation (CCDA), there are
several challenges for large-scale analysis. The first
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challenge is the existence of lateral boundaries. Since
observations outside the mesoscale model boundaries do
not influence the analysis within the model domain, the
quality of analysis near the model’s lateral boundaries
can be degraded (Hsiao et al.”). A negative impact might
also arise if the analysis of a large-scale feature requires
information from a large-scale observational network
lying partly outside the domain. Another challenge is the
lack of observations over the domain. One important
source of data for global analysis is the information from
satellite radiance assimilation, which can be quite
important in data-sparse regions, but this information is
generally not available in mesoscale analysis. Regional
density observation networks, such as weather radar,
automated weather stations, wind profilers, and GPS/PW,
may not have good spatial coverage. Romine et al. found
that a long period of continuous cycling revealed
significant biases in the analyses, and the subsequent
cloud-resolving forecasts had limited abilities, which
were noticeably inferior to forecasts initialized from the
global forecast system analysis®. The authors also found
that the analysis bias was influenced not only by
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systematic error caused mainly by model physics but also
by bias differences between observation platforms. With a
lack of sufficient observations to correct the background
error, systematic biases can accumulate in the initial
conditions after a period of continuously cycled analysis.
Moreover, by using background error covariance models
to represent mesoscale dynamic characteristics (Siroka et
al.™), and by using dense observation networks, such as
weather radar observations or radar retrieved products
(Zhang et al.™), mesoscale data assimilation systems are
designed for mesoscale and smaller-scale applications.
Berre!" reported that background error sampling for scales
larger than one-quarter of the longest wave over the LAM
domain size becomes questionable. Berre et al. also
showed that the analysis process uses the observations to
reduce the amplitude of the large-scale portion of the
background errors, resulting in the distortion of
large-scale information after the mesoscale analysis™.

Mesoscale analysis and forecasts also suffer from the
lateral boundary conditions (LBCs) problem. LBCs are
generally treated in a manner that is not well posed or
physically sound. The Davies relaxation method (Davies™)
is adopted in many LAMs, but since they are not well
posed, atmospheric phenomena may be poorly propagated
through the LAM boundaries. The LBC formulation
errors can have an adverse effect on the large-scale
three-dimensional shape and propagation properties of
large-scale baroclinic waves in the atmosphere (Guidard
and Fischer ®). During mesoscale CCDA, the continuous
refreshing of the LBCs from a global boundary condition
would not be sufficient for the LAM system to maintain
the large-scale structures analyzed by the global model
(Sadiki et al. ™). For non-hydrostatic cloud-resolving
models with CCDA, the smaller size of the domain means
that such systems can be highly dependent on lateral
boundary  coupling and large-scale  relaxation
formulations™.

Several methods have been proposed to utilize
global model analysis to improve the initial conditions of
the LAMs and compensate for the lack of information on
larger scales. Brozkova et al. introduced the digital filter
blending method, which is applied in spectral space with
a low-pass digital filter to incrementally blend a
large-scale analysis with the small scales of LAM ™M,
Digital filter blending is an implicit blending method for
the spectral transition zone, which is implicitly defined by
using an incremental digital filter initialization technique
(Lynch et al. "), Siroka et al. proposed combining digital
filter blending with the 3DVar method, with digital filter
blending applied either before or after the 3DVar
method™. The combination of the two methods leads to
an improved LAM assimilation system with a forcing
toward the global hosting system. Guidard et al. showed
the positive impact of this method on a 24 h assimilation
period as well as the improvement of the forecast
accuracy in subsequent model forecasts!'.

Another approach to improve the quality of the

initial conditions is the employment of an explicit
blending method, in which the spectral transition zone is
explicitly defined by using a predefined low-pass spatial
filter. Yang used an incremental spatial filter to blend the
large-scale analysis from the European Centre for
Medium-Range Weather Forecasts (ECMWF) with the
small-scale fields from the High Resolution Limited Area
Model (HIRLAM)™. Wang et al. found the results of
blending-based schemes to be promising with respect to
simple 3DVar alone!. Hsiao etal. utilized the same
blending method to merge the NCEP global analysis with
the regional analysis from the WRF 3DVar system for the
purpose of initializing the typhoon WRF model™. They
found that the blended analysis takes advantage of both
global analysis and mesoscale analysis.

Since digital filter blending has few relationship with
statistical concepts such as maximum likelihood and error
representation, Guidard and Fischer proposed the use of
the global analysis as an extra source of information to be
added to the cost function of LAM 3DVar®™. An extra
penalty term in the cost function would measure the
weighted distance between the global analysis and LAM
background. The global analysis is truncated at a low
wavenumber to ensure that only large scales are penalized
in the analysis. Dahlgren and Gustafsson used the same
approach! but assimilating only the vorticity field from
the global analysis and using global analysis error
covariances that were not simplified by a diagonal matrix
as in Guidard and Fischer™. Vendrasco et al. added a
large-scale analysis constraint to the cost function”. They
also found that this constraint is able to guide the
assimilation process in such a way that the final result still
maintains the large-scale pattern while adding the
convective characteristics where radar data are available.

The non-hydrostatic GRAPES model and data
assimilation system have been operationally utilized since
2006. The latest version of GRAPES-Meso 4.0 began
operation in 2017. This model adopts the 3Dvar analysis
technique, with 10 kilometers horizontal resolution and
50 wvertical levels. The cloud-resolving version of
GRAPES-Meso 4.0 with a 3 kilometer resolution has
been running in real time in eastern China since 2015.
The initial condition comes from T639 analysis
downscaling. The Davies relaxation” method is adopted
for the LBCs, which are not well posed for the model.
Huang et al. found that the weaknesses of GRAPES-Meso
include over-prediction of precipitation, large 2 m
temperature forecast errors, etc!". Wang et al. found that
8 times per day, the 3 h forecasts of the 2 m temperature
from the GRAPES-Meso CCDA are lower, on average,
than the observation on the western Sichuan Plateau in
eastern Tibet, the Yungui Plateau and the Wuyi
Mountains but are higher than the observations in North
China™., Xu and Wang used the quantitative precipitation
forecast (QPF) of GRAPES-Meso 4.0 to evaluate the
precipitation accumulation, frequency, intensity and
diurnal cycle™. They found that the predicted heavy
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precipitation intensity is stronger than the observations for
the diurnal cycle of hourly precipitation and that the
precipitation frequency has a weaker peak in the
afternoon. Huang et al. found that the observations used
in GRAPES-Meso 3Dvar are less preferable because
satellite radiance assimilation may be quite indispensable
over the marine areas in the regional model domain™. To
reduce the error of the GRAPES-Meso initial
conditions, we adopt the blending method from Yang !
and the constraining method from Guidard and
Fischer® to merge the large-scale analysis information
from the China Meteorological Administration T639 L60
global spectral operational forecast system (hereafter
called T639) with the mesoscale analysis data from
GRAPES-Meso 3Dvar. Comparative studies of the
blending and constraining method are undertaken to find
a suitable method for the GRAPES-Meso CCDA.

The paper is organized as follows. The blending
method and the constraining method are described in
detail in Section 2. Section 3 describes the model
configuration and experimental setup. The experimental
results as well as impacts on the analysis and forecast are
given in Sections 4 and 5, respectively. The conclusions
are given in Section 6.

2 METHODOLOGY

2.1 Blending method

An explicit spatial blending method proposed by
Yang™ is adopted in this study. This blending method
utilizes an incremental spatial filter to combine the
large-scale analysis from T639 and the mesoscale
analysis from GRAPES-Meso 3Dvar. The spectral
transition zone is explicitly defined by using a predefined
low-pass Raymond sixth-order tangent implicit filter
(Raymond et al.®") with a fixed cutoff wavelength. The
formula for the blending procedure can be denoted as
follows:

Xy =X (1) + DX gy () =Xy (D] )

where X Tmso (/) is the GRAPES-Meso 3Dvar analysis

field, X ;b (1) is the T639 global analysis field, and X ;d )

is the blended mesoscale analysis field. The amplitude
response function of the Raymond sixth-order tangent
implicit filter to wavelength [ is expressed as follows:

TOX )

a(l)=|1+etan’( ;

2

g= tan*(wlax ) 3)
where [ is the wavelength in kilometers and ¢ is a filter
parameter related to GRAPES-Meso grid spacing éx and
cutoff wavelength /.. From Equations (2) and (3), the
power of the filter is 0.5 when [=[,, which means that an
identical weight will be given to GRAPES-Meso
mesoscale analysis and T639 global analysis. The larger
weight will be given to T639 global analysis for scales

greater than the cutoff wavelength, and wavelengths
below that will be assigned to GRAPES mesoscale
analysis. The cutoff wavelength scale is a key parameter
for the spatial blending method. Hsiao et al. found that the
1,200 km cutoff wavelength is a good choice to separate
small-scale circulation patterns from the environmental
flow when a vortex relocation scheme for tropical
cyclone initialization is applied in the WRF model™?. In
the present study, we tested two cutoff wavelengths of
600 and 1,200 km, and we found that the cutoff
wavelength of 1,200 km is better than 600 km for almost
all precipitation thresholds, especially for the moderate
precipitation threshold of 10 mm/D and the large
precipitation threshold of 25 mm/D. Considering the
findings of Hsiao et al.” and our test results, we choose
the cutoff wavelength to be 1,200 km for all variables on
all model levels(Fig. 1), which is rather imprecise without
the consideration of spectral distribution for different
variables on different model levels(Zhang et al.™). Fig. 1
also shows that there is almost no global information from
T639 for wavelengths shorter than 600 km.

In practice, the blending procedure consists of
several consecutive steps: 1) interpolating T639 global
analysis fields with 30 km resolution into GRAPES-Meso
model fields with 3 km resolution by using GRAPES
Standard Interpolation software and then calculating the
analysis departure between the global analysis and the
GRAPES-Meso 3Dvar mesoscale analysis; 2) using the
spatial to spectral space transform tool to convert the
model fields of analysis departure to the spectral space;
the two-dimensional discrete cosine transform (2D-DCT)
method (Denis et al.”; Zheng et al.?¥) is utilized for the
transform; 3) applying the Raymond sixth-order tangent
implicit filter to the analysis departure in the spectral
space, where the blending spectral transition zone is
explicitly defined by the cutoff wavelength; 4) using the
2D-DCT method again but for the spectral to spatial
space inverse transform to obtain the model grid field,;
and 5) adding the filtered analysis departure to the
GRAPES-Meso 3Dvar analysis to obtain a blended
mesoscale analysis field.

2.2 Constraining method

In the GRAPES-Meso 3DVar analysis formulation,
the cost function is defined to measure the distance
between the background state x, and the mesoscale
analysis x, and between the observations y, and x,. To
consider the T639 global analysis x; as an extra source of
information, in this study, the constraining method
proposed by Guidard and Fischer® is adopted. A penalty
term is added to the cost function of the 3Dvar data
assimilation system. We also adopt similar simplifications
for the formulation, as suggested by Guidard and
Fischer™, which assumes that the errors of large-scale
information from the T639 analysis are uncorrelated with
either the background state or observations; moreover, the
global analysis error covariance is treated as a diagonal
matrix. Vendrasco et al. added a large-scale analysis
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constraint to the cost function of a radar 3Dvar data
assimilation system!”. They also assumed the large-scale
analysis error covariance matrix for wind, temperature,
and humidity to be an uncorrelated diagonal matrix with

J(xa) -]/1 (xa)+‘]a (xa)+-]1~(xu) ( Xa xh)TB l(xu QC[,)+
where matrix B is the background error covariance,
matrix R is the observation error covariance and matrix
B, is global analysis error covariance. H,(*) is the
nonlinear observation operator, which maps the
mesoscale analysis to the observation space, and H, is the
linear interpolation operator, which maps the mesoscale
analysis with higher resolution to the global analysis with
coarse resolution. The innovation vector is defined as
d,=Hx,—y,. For comparison, the global analysis departure
is also defined as d,=H;x,—x;. Before the global analysis

_ 1 o Thy 1
J(6x,)= 5 ox, B 6w, + 5

To reduce the condition number and to accelerate
the minimization algorithm, the preconditioning of the
background cost function is implemented by a control
variable transform in GRAPES-Meso 3Dvar. The control

J(w)=

With this definition, the extra penalty term for
large-scale information is conveniently added to the cost
function of GRAPES-Meso 3Dvar. Global analysis error
covariance matrix B, is assumed to be a diagonal matrix,
and the error estimation is essential for using global
analysis information.

In an operational setting, the background error
covariances for T639 3Dvar are estimated from forecast
samples of 24 h and 48 h differences verified at the same
time by using the National Meteorological Center (NMC)
method (Parrish and Derber™). There is no estimation of
analysis error covariances in an operational setting.
Derber and Bouttier™ estimated the 6 h forecast error
variance by inflating the analysis error variances using the
error growth model of savijarvi® for the evolution of

1 L L

0.8 1 r

0.6 1 r

T639 Meso
0.4 3

Amplitude Response

024 r

0 T T T
6000 1200 600 100 0
Wave Length (km)

Figure 1. Amplitude responses for the Raymond filter as a
function of wavelength with a cutoff of 1,200 km. The Global
and Meso models are demonstrated as T639 global analysis and
GRAPES-Meso analysis, respectively.
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constant errors for each variable. The cost function with
the global analysis constraint term J, can be rewritten as
follows.

(Hk(xa) xk)TB (Hk(xa) xk) (4)

departure is calculated, the T639 global analysis fields are
truncated at wavelengths larger than 1,200 km to ensure
that only large scales are penalized in the analysis. x; is
then thinned to a coarse resolution to avoid having the
dominance of the J, term in the cost function. The
thinning experiment shows that a 300 kilometer resolution
is suitable. The thinned data are then treated as one type
of “observation” to calculate the global analysis
departure. With linear observation operator H,, Equation
(4) can be rewritten as an analysis increment format:

(H, 8+ d) R (H,0,+d) +-(Hide, + )" B, (Hud,+dy) s)

variable w to mesoscale analysis state variables is defined
as &x, = Uy, where U is defined as B=UU" (Derber and
Bouttier ™). The cost function with respect to the control
variable is as follows:

(HkUW+dk)TB (HkUW+dk) (6)

standard errors. With this error growth model, the analysis
error variances would increase by approximately 1.05- to
I.1-fold in 6 h or the background error variances are
approximately 1.05 to 1.1 times larger than the analysis
error variances. In this study, we simply multiply 0.9 by
the background error variances to obtain the analysis error
variances.

3 CASE STUDY AND EXPERIMENTAL SET-
TING

3.1 Case study

An extremely severe precipitation event occurred in
north China on 19-20 July 2016, which was triggered by
an eastward-moving circulation of a South Asia high
together with the northwestward-moving Western Pacific
subtropical high and the low vortex (LV) in the
westerlies, which was born and developed in the mid-high
latitudes. The characterization of this event is large and
persistent, with strong locally intense convective
precipitation and orographic precipitation. The abnormal
development of the Huanghuai (a basin between Yellow
River and Huaihe River) cyclone, northwest and southeast
low-level jets, and the abnormally abundant moisture
together indicated that dynamic lifting and moisture
conditions would greatly facilitate this severe
precipitation process (Fu et al.”™). From the early morning
(local time, 0000 UTC) to midday on 19 July, heavy
precipitation was orographic, and convective precipitation
was caused by the easterly winds ahead of the trough.
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From the night of local time (1800 UTC) of 19 July to the
daytime of 20 July, the second part was produced by
spiral rain bands on the north side of the Huanghuai
cyclone from nighttime local time (1800 UTC) on 19 July
to the daytime on 20 July. Fig. 2 shows the 24 h
accumulative precipitation observations of 2,500 stations
in China during 0000 UTC on 19-20 July, from which we
can conclude that at 0000 UTC 19-20 July, most of the
heavy precipitation over 50 mm was centered in southern
Beijing and Hebei Province, the central part of Hubei
Province, and the border between Chongqing and Hunan
Province.

45N —
40N
35N —

30N —

25N
105E 110E 115E 120E 125E

10 25 50 100 200

Figure 2. 24 h accumulative precipitation at 0000 UTC 19-20
July.

For the mesoscale characteristics of this heavy
precipitation event, according to the evolution of
composite radar reflectivity, it is clear that at 1600 UTC
on 18 July, randomly distributed convective cells
developed from the north of Henan Province to the south
of Hebei Province along the eastern foothills of the
Taihang Mountains (figure not shown). The cells were
northward moving when convection systems were
impacted by the southerly winds before the upper-level
trough. The first belt-shaped arrangement of the
convective cells along the south-north direction was
formed at 2000 UTC on 18 July (hereafter called the first
convection system) and remained stationary. At the same
time, another well-organized belt-shaped convection
system along the southwest-northeast direction, which is
also near the upper-level trough, was located at the border
between Shaanxi and Shanxi Provinces (hereafter called
the second convection system). When the upper-level
trough developed and moved eastward, the second
convection system also moved eastward. At 0000 UTC on
19 July, the second convection system was located along
the central part of Shaanxi Province to the central and
western part of Shanxi Province (Fig. 10). The second
convection system began to merge with the first

convection system to form a new belt-shaped convection
system at 0600 UTC on 19 July. This new system
remained stationary until 1200 UTC on 19 July. At the
same time, an upper-level low vortex circulation system
(LVCS) was formed, and the center of the low vortex was
located in central and northern Henan Province at 1200
UTC on 19 July. This system moved slowly northward
and was located in the south of Hebei Province at 0000
UTC on 20 July (Fig. 11). In this study, our interests are
mainly focused on the capability of CCDA mesoscale
analysis and subsequent model forecasts for this heavy
precipitation event at 0000 UTC on 19-20 July.
3.2 Model configuration

The cloud-resolving version of GRAPES-Meso 4.2
adopts a regular latitude-longitude grid with 0.03°
horizontal resolution and 50 levels in the wvertical
direction, with a model top of approximately 10 hPa. The
model state variables include zonal wind u« and
meridional wind », potential temperature 6, Exner
pressure 7r, specific humidity ¢ and other hydrometeors.
The default physical process parameterization schemes
include the WSM6 microphysical process
parameterization scheme, the RRTM longwave radiation
scheme, the Dudhia shortwave radiation scheme, the
Monin-Obukhov planetary boundary layer scheme, the
Noah land surface process scheme and the MRF planetary
boundary layer scheme. No deep cumulus convection
scheme is used in the experiments. The model domain in
this study is set to (17°-50°N, 102°-135°E) (Fig. 3), which
is similar to the model configuration of the real time
running system. The northwestern model domain is
occupied by mountains and highlands, and more than
one-third of the model domain is covered by the Western
Pacific Ocean. The GRAPES mesoscale 3DVAR data
assimilation system has the same horizontal and vertical
resolutions as the model configuration. The 3DVAR
analysis state variables include u, », 7, and the humidity
variable (relative humidity or specific humidity) (Ma et
al. ). The potential temperature 6 is deduced by the
hydrostatic  relationship between =« and 6. The
background error covariance is estimated using the NMC
method, and a Gaussian regression function is employed
to calculate the background error horizontal correlation
structure. Xue et al. B 1 attempted to construct a
reasonable background error covariance for multi-scale
data assimilation, but this technique is not yet available in
GRAPES-Meso 4.0. The observation data used in 3Dvar
include radiosonde, Airep, Synop, ships and buoys,
atmospheric motion vectors (AMVs), VAD wind retrieval
from radar radial wind, wind profiler, and ground-based
GPS/PW data. The observations are scarce in
mountainous areas and especially over the ocean. Table 1
lists the observation stations or data counts used in the
experiments, and Fig. 4 gives the radiosonde location in
the model domain. The 3 h incremental digital filter is
adopted after the 3DVar analysis to obtain a dynamic
balanced initial field.
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Figure 3. The model domain in this study is set to 17°-50°N,
102°-126°E.

The hydrometeor variables of GRAPES-Meso 4.2
are not analyzed by 3DVar but are initialized by the
three-dimensional cloud analysis scheme (Zhu et al.®).
The data source ranges from Doppler weather radar
three-dimensional ~ mosaic  reflectivity data  to
geostationary meteorological satellite data and surface
observations. The nudging technique is employed for the
cloud analysis, and the variables included are humidity,
cloud water, cloud ice, rain, snow, graupel and
temperature. The cloud analysis scheme is a convenient
way to use weather radar reflectivity information in the

TEMP

50°N
45°N
40°N
35°N
30°N
25°N

20°N

105°E

110°E  115°E  120°E  125°E  130"E  135°E
Figure 4. The distribution of radiosonde observations. There are
a few radiosondes and other conventional observations over

marine areas.

mesoscale system. Compared with the global model
analysis, the observations only used by mesoscale
analysis and cloud analysis include relative humidity data
from Synop; wind data from ships, radar VAD and wind
profiler, and ground-based GPS/PW data; radar
reflectivity data from 68 stations; total cloud cover data;
and cloud top brightness temperature data from the
Fengyun geostationary satellite. If the cloud analysis
scheme is switched off, the hydrometeor variables are
spun up by the microphysics process parameterization
scheme during model integration.

Table 1. Observations used in 3DVar at 0000 UTC on 19 July.

Observation Type

Number of stations/data counts used in 3DVar

Radiosonde
Airep

Synop

Ships and Buoys
AMVs

Radar VAD
Wind Profiler
GPS/PW

135 stations (u, v, Tor P,and RH)
3,974 data counts (u, v, T)
2,240/901 data counts (Ps/RH)

45 data counts (u, v and Ps)

249 data count (u, v)

68 stations (465 data counts) (u, v)
93 stations (2175 data counts) (u, v)
584 stations (PW)

T639 global analysis downscaling is used as the
background for cold starting of the CCDA. The LBCs are
also provided by the T639 in 3 h intervals. The ECMWF
ERA-interim reanalysis data set (hereafter called ERA
data) at 0.5° resolution is interpolated to the grid points of
GRAPES-Meso and serves as the real atmospheric state

for large-scale patterns to verify the analyses of the
experiments.
3.3 Experimental design

To reduce the error of the GRAPES-Meso initial
conditions after a continuously cycled analysis and to
explore the merits of the blending and constraining
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method to merge the large-scale information from T639
analysis  with the mesoscale analysis from
GRAPES-Meso 3Dvar, several experiments are designed
in this study. The control run is based on the traditional
CCDA procedure, and the impact of T639 on the
mesoscale analysis is determined according to the LBCs.
The 24 h period CCDA with a 3 h updated analysis
interval is used to obtain the initial condition, and then a
24 h forecast is performed. The explicit spatial blending
on model surface (ESBM) experiment is based on the
control run, but after GRAPES-Meso 3Dvar is completed
and the mesoscale analysis field is obtained, the blending
procedure based on Equation (1) is used to derive a
blended analysis field. Instead of the original 3Dvar
analysis field, the ESBM experiment utilizes the blended
analysis field as the initial condition for next 3 h forecast

to produce the background. The constraining experiment
(JK) is also based on the control run. To compare the
impact of the three-dimensional cloud analysis on the
CCDA  and  forecast, an  experiment  with
three-dimensional cloud analysis based on experiment JK
(JKCA) is performed. Additionally, a global analysis
downscaling experiment (GADN) that interpolates T639
global analysis to the GRAPES-Meso model as the initial
condition is added. The experimental settings are listed in
Table 2. In this paper, the CCDA procedure runs from
0000 UTC on 18 July to 0000 UTC on 19 July to obtain
the final analysis field for experiments CNTL, ESBM, JK
and JKCA. The analysis time of the GADN experiment is
also set at 0000 UTC on 19 July, after which a 24 h
forecast is performed for all experiments.

Table 2. Experimental setting.

Expt Experimental setting

CNTL 3DVar with the cost function J, + J,.

ESBM Explicit spatial blending on model level blended variable for u, v, 7 and g.
JK 3DVar with the cost function J, + J, + J,, constrained uw, v, T or p in J,.
JKCA Same as experiment JK, with three-dimensional cloud analysis.

GADN Global analysis downscaling.

4 IMPACT ON ANALYSIS

4.1 Mesoscale analysis difference

The bias and root-mean-square error (RMSE) of the
radiosonde innovation and residual are estimated first.
The innovation calculated by radiosonde observation
minus background field (O-B) at 0000 UTC on 19 July is
utilized to verify the improvement of the background. The
background field is obtained from the 3 h forecast of the
last analysis cycle at 2100 UTC on 18 July. The results
are shown in Fig. 5. The comparison clearly shows that
the bias and RMSE of experiment ESBM are the smallest
among the four experiments, especially for wind
components, while only a slight improvement of error
reduction can be found in experiment JK. For
temperature, the errors from the ESBM experiment are
smaller than the others. The bias and RMSE for analysis
residual calculated by radiosonde observation minus
analysis field (O-A) has also been estimated for CNTL,
ESBM and JK, and the conclusions are similar to
innovation (figure not shown).

We also compare the distribution of variable
differences in initial fields (Fig. 6). At 0000 UTC on 19
July in the T639 global analysis downscaling field,
south-central Shaanxi to central Shanxi Province at 700
hPa is the location of a wind shear line (WSL), before
which the airflow is southeastern, warm, and moist. At
the same time, a deep, dry and cold trough is located
behind the WSL. Compared with the GADN experiment,

the cold trough of CNTL is relatively weak and the
position of the WSL is more northwesterly, from the
border between central Shaanxi and Shanxi Provinces to
the northwest of Shanxi Province. When examining the
difference between the GADN and CNTL experiments
(Fig. 6b), we find that the water vapor content of CNTL
before the WSL is significantly increased, and the wind
fields of the CNTL experiment are stronger than the
GADN around the WSLs. For the ESBM experiment
(Fig. 6¢), the position of WSL and the circulation of the
cold trough behind the WSL are similar to GADN, but the
water vapor content before the WSL is larger. For
experiment JK, the position of the WSL is similar to that
in experiment ESBM. It is clear that experiment JK has a
similar impact on wind but that humidity is slightly lower
than in experiment CNTL (Fig. 6d). For WSL and
circulation, there is no significant difference between
experiments JK and JKCA.

One important characteristic of composite radar
reflectivity at 0000 UTC on 19 July is that the first
convection system remained stationary along the eastern
foothills of the Taihang Mountains, while the second
convection system was located from central Shaanxi
Province to central and western Shanxi Province (Fig.
7a). The composite radar reflectivity of experiment
CNTL shows that both belt-shaped convection systems
are not well captured in the initial field. The first
convection system is completely missing, and the second
convection system remains along the border of Shanxi



234

Journal of Tropical Meteorology

Vol.25

and Shaanxi Provinces, which indicates that the second
convection system is eastward moving more slowly than
the observation. There are false convections in
northwestern Shanxi Province and central and western
Henan Province. The result from experiment CNTL
shows that after eight 3-hour continuously updated
analysis cycles during a 24 h period, the CCDA procedure
fails to capture the major characteristics of both
convection systems. The composite radar reflectivity of
experiment ESBM shows that the first convection system
has been captured in the initial field, while the second
convection system is located more easterly than the
observed location. The composite radar reflectivity of
experiment JK is similar to that of experiment CNTL.
When considering the three-dimensional cloud analysis,
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the JKCA experiment is better than in experiment ESBM,
and the false convections are restrained. This case shows
clearly that for mesoscale analysis, the explicit spatial
blending method has a considerable impact on the
convection system analysis. Comparing experiments JK
and JKCA, we find a benefit is achieved from including
radar reflectivity data information. For the mesoscale
analysis, the dominant impact comes from mesoscale
observations, such as the radar reflectivity used in the
cloud analysis. The performances of ESBM and JKCA
show that after introducing large-scale and mesoscale
observation information into the GRAPES-Meso
mesoscale analysis, the initial fields of the convection
system are improved.
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Figure 5. Bias and RMSE of radiosonde innovation. (a) u-wind, (b) v-wind, (c) temperature.
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4.2 Balance in initial field

For a rapid update analysis cycle of 3 h or even
higher time frequencies, the balance of wind and mass in
the initial condition is essential. Vendrasco et al.'" found
that using the 3DVar technique for radar data
assimilation could produce spurious precipitation results
and large errors in the position and amount of
precipitation. One possible reason for the problem is
attributed to the lack of proper balance in the dynamical
and microphysical fields. In the present study, experiment
CNTL may have caused an imbalance between wind and
mass in the analysis fields both for the large scale and the
convective scale. The explicit spatial blending method
utilizes spatial interpolating, transforming, and blending
procedures, which will also cause the imbalance problem
in the blended analysis field. An investigation of the
initial balance properties is desirable and needs to be
examined. The domain-averaged absolute surface
pressure tendency (ASPT) is calculated to reflect the

initial balance properties of model states (Lynch and
Huang!).
1 J
1 0P
7.7 arven 7
1-] ; ]:zl ot ij ( )

where Ps is the surface pressure and the summation
denotes the calculation over the whole GRAPES-Meso
model domain.

Figure 8 gives the adjustment of domain average
ASPT in every minute over the 1 h forecast. The results
show that at first, several model forecast steps in
experiments CNTL, ESBM and JK suffer from strong
noise, and the value of ASPT is approximately 0.17
hPa/min, which is larger than in experiment GADN.
However, the noise dampens very quickly to 0.05
hPa/min, and the pressure tendencies become steady after
10 min. The result of experiment GADN also shows the
lack of balance between wind and mass, but the noise is
weaker than in the other experiments. The T639 analysis
downscaling maintains good balance for the large scale,
and it does not contain small-scale information, although
those features will be helpful for noise damping. After the
first several model forecast steps, the noise in experiment
JK is less than in experiment CNTL in the subsequent
time, which indicates that considering large-scale
information will improve the balance in the mesoscale
analysis.

From Fig. 8, when comparing experiments CNTL
and ESBM, we find that the two experiments are similar,
but experiment ESBM is slightly worse than experiment
CNTL. The reason for this difference may be the
definition of the transition zone, which is explicitly
defined by using a predefined low-pass spatial filter and
the same 1,200 km cutoff wavelength for all variables on
all model levels, which is not reasonable. Brozkova et
al. " showed that in the DF blending method, the
transition zone is implicitly defined where the spectral
coefficients are progressively damped by the digital filter

to ensure an appropriate state of balance between the
mass and wind initial fields. This process is superior to
the explicit procedure used in the present study. It is
difficult to provide a reasonable cutoff wavelength for
different variables on different model levels with the
explicit spatial blending method because the cutoff
wavelength is dependent on the day-to-day atmospheric
circulation.

Domain-averaged absolute surface pressure tendency

N(hpa/min)

0
00z19July2016  10min 20min 30min 40min 50min 01z19July

Figure 8. The adjustment of domain-averaged ASPT (unit:
hPa/min).

4.3  RMSE of analysis against ERA data

To quantitatively evaluate the improvement on a
larger scale analysis, we transferred the analyses into the
spectral space where waves shorter than 600 km are cut
off; thus, only large-scale information is contained in the
analyses. Then, the RMSE values for variables u, v, ¢ and
q are calculated against the ERA data at 0.5° resolution.
The results are shown in Fig. 9. For wind components «
and v and temperature 7, the RMSEs of experiment
CNTL are larger than in the other experiments. According
to our discussion in the previous text, experiment CNTL
holds improved mesoscale information but with distorted
large-scale information due to model bias together with
observation bias and the lack of observations over the
domain, etc. In contrast, experiment GADN has the
smallest error among all of the experiments, which is
reasonable because both ERA data and T639 analysis
downscaling are global model data and are closer to each
other. Compared with GADN, adequate performance of
ESBM can only be found in wind component ». It should
be noted that the temperature in the GRAPES-Meso
analysis is deduced by Exner pressure 7 and potential
temperature 6 according to the hydrostatic relationship,
which is not conserved for the non-hydrostatic
cloud-resolving higher resolution model (Vetra-Carvalho
et al.®). The performance of JK is less desirable than that
in ESBM because the large-scale information in ESBM is
directly replaced by the explicit spatial blending method,
while experiment JK only uses the weighted constraint
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term in the 3DVar cost function to force the analysis field

to be closer to global analysis. For specific humidity, the
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Figure 9. RMSEs for wind (top panels), temperature (left bottom panel), specific humidity (right bottom panel) fields of the

experiments against the ERA data at 0.5° resolution.

5 IMPACT ON FORECASTS
5.1

Composite radar reflectivity and low vortex

The composite radar reflectivity (CRR) of the
forecasts is presented in Fig. 10 to directly compare the
forecasts of the mesoscale information. As shown in Fig.
10, the main synoptic characteristic at 0600 UTC on 19
July is the convergence of two convection systems in the
eastern foothills of the Taihang Mountains. Obviously, the
convergence of two belt-shaped convection systems in

CNTL has not occurred yet because the second

convection system is still located in the central part of
Shanxi Province, far from the fist convection system in
the south. The reason for this delay may be explained by
the corresponding initial condition at 0000 UTC on 19
July, in which the second convection system also moves
more slowly than the observation (Fig. 7). The merging of
two convection systems at 0600 UTC on 19 July in the
ESBM and JKCA experiments is better than the
performance of experiment JK, and all are superior to
CNTL.
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Figure 10. CRR at 0600, 1200, and 1800 UTC on 19 July and 0000 UTC on 20 July. The time increases from top to bottom by 6 h.
The first row shows the CRR. Maps on the second row from right to left represent experiments CNTL, ESBM, JK and JKCA,
respectively. The black line indicates the observed convection system of interest. "D" indicates the center of the LVCS from the ERA

data.

According to the second row of Fig. 10, at 1200
UTC on 19 July, a newborn cyclone in the observation
remains stationary along the eastern foothills of the
Taihang Mountains. Compared with the observation, the
performance of CNTL is less desirable than that of ESBM
and JKCA. At the same time, an LVCS has formed in the
central part of Henan Province. Fig. 11 shows the low
vortex's track calculated by the sea-surface pressure
minimum and 85 hPa vorticity. According to Figs. 10 and
11, the four experiments, i.e., CNTL, ESBM, JK and
JKCA, capture the generation of this structure but with
different locations. Compared with the ERA data, the
positions of LVCS in experiments CNTL and JKCA are
located eastward, while in ESBM, they are more
southeastward. In summary, experiments JK and JKCA
generate more reasonable vortex circulation structures
than the other experiments.

At 1800 UTC on 19 July (third row of Fig. 10), the
LVCS develops and moves northeastward slowly, and the
position of low vortex is mainly in the northern part of
Henan Province. At 0000 UTC on 20 July, this mature
cyclone moves slowly northward and reaches the
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Figure 11. The LVCS path prediction at 0000 UTC on 19 to 20
July. The position of the LVCS is calculated by the sea-surface
pressure minimum and 850 hPa vorticity. EC represents the
ECMWEF ERA data.
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southern part of Hebei Province, bringing about heavy
precipitation mainly centered in two regions. The first
location of heavy precipitation is in the south of the
cyclone and near the cold front, and the second location is
in the north of cyclone and near the strong wind shear.
For the first region, experiments CNTL, ESBM and
JKCA could capture the cold front in the southern vortex.
For the second region, the location forecast of CNTL is
more southward than the observation. The observed
maximum CRR lies in southern Beijing. In contrast,
however, the maximum CRR of experiment CNTL lies in
southern Hebei Province and northwestern Shandong
Province. Experiment ESBM is similar to experiment
CNTL, but JK and JKCA are both correct in forecasting
the position of the maximum CRR. From the track
forecast of the vortex (Fig. 10), we can conclude that the
track predictions of experiments JK, JKCA and CNTL
are closer to the ERA data; however, the performance of
ESBM is not satisfactory.
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5.2 RMSE of the forecast field

To quantitatively evaluate the improvement of
forecasts, the RMSEs for the wind component,
temperature and specific humidity fields of the four
experiments against the ERA data at 0.5° resolution are
calculated. The RMSE profiles of the 12 h forecast (at
1200 UTC on 19 July) are shown in Fig. 12. For wind
components u and v, the RMSE of experiment CNTL is
the largest, and significant improvement can be found in
experiment ESBM, while the RMSE reduction for
experiments JK and JKCA is only slight, especially for
the wind components in lower levels at approximately
500 to 1,000 hPa. For temperature, only the RMSE of
experiment ESBM has a visible improvement between
levels 400 and 850 hPa, and the performances of JK and
JKCA are relatively neutral. For specific humidity, we
also find that experiment ESBM has the smallest RMSE
distributions except for levels below 850 hPa, and the
forecast accuracy of experiments JK and JKCA is only
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Figure 12. The RMSE of the forecast field at 1200 UTC on 19 July for wind (top panels), temperature (left bottom panel) and specific
humidity (right bottom panel) fields of experiment against the ERA data at 0.5° resolution.
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slightly improved. The RMSE profiles of the 24 h
forecasts (figure not shown) are also calculated, and the
conclusions are generally similar to those of the 12 h
forecasts.
5.3 Precipitation forecast

The horizontal distributions of the 24 h accumulative
precipitation forecasts during 0000 UTC on 19-20 July of
the four experiments are given in Fig. 13. As shown in
Fig. 2, most of the heavy precipitation over 50 mm/d is
centered in southern Beijing, Hebei Province, and the
central part of Hubei Province and on the border between
Chongqing and Hunan Province. According to Fig. 13,
experiments CNTL, ESBM and JK fail to forecast the
heavy precipitation that occurred in southern Beijing, and
only experiment JKCA is accurate regarding the location,
but the intensity predicted is clearly not heavy enough.
Additionally, considerable spurious heavy precipitation is
forecasted in experiment CNTL in eastern Shanxi
Province, which is corrected in experiment ESBM but
still exists in both the JK and JKCA experiments. CNTL
failed to capture the precipitation near the border between
Chongging and Hunan Province, while the other three
experiments are slightly closer to the target. In summary,
the horizontal pattern of accumulative precipitation of
experiment JKCA is most similar to the observation.

From 0000 UTC on 19 to 20 July, heavy and
persistent precipitation caused by a new belt-shaped
convection system was located from Shijiazhuang, Hebei
Province, to Anyang, Henan Province. The observed
accumulative rainfall was greater than 500 mm and was
mainly centered on the belt of this new belt-shaped
convection system. The characteristic of orographically
forced precipitation is evident. First, the precipitation data
between 35.5°N and 38.5°N are averaged to assess the
impact (Fig. 14a). The maximum value of the
precipitation  forecast of experiment JKCA is
approximately 150 mm along the eastern foothills of the
Taihang Mountains. The precipitation forecast of
experiment CNTL has the maximum value of
approximately 140 mm along the eastern foothills of the
Taihang Mountains, and this value is less than that in
experiment JKCA. Fig. 14 (b) also gives an example of
accumulated precipitation along 37.75° N, where
experiments CNTL, ESBM and JK have greater
precipitation in the eastern foothills of the Taihang
Mountains. Experiment CNTL reserves the well-featured
mesoscale information, leading to an improvement in the
precipitation forecast. For experiment ESBM, the
precipitation result is similar to that in experiment JK. We
also found that the precipitation value over the plant
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Figure 13. Horizontal pattern of 24 h accumulative precipitation forecast during 0000 UTC on 19-20 July for (a) experiment CNTL,
(b) experiment ESBM, (c) experiment JK, and (d) experiment JKCA. The color bar shows the different precipitation thresholds (unit:

mm).
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Figure 14. The precipitation forecast in the foothills of the Taihang Mountains; the shaded area is the topography. (a) Precipitation data
average between 35.5°N and 38.5°N. (b) Precipitation data along 37.75°N. The left axis is for accumulated precipitation (unit: mm),

while the right axis is for topographic height (unit: meters).
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region is also increasing. The position of the LV of
experiment ESBM is located more southeastward than in
the other experiments, which will increase rainfall over
the plant region. The precipitation forecast of experiment
JKCA is similar to that of experiment CNTL but with
more rainfall over the plant region.
5.4 Precipitation forecast verification

Two QPF statistics scores, i.c., the equitable threat
score (ETS) and frequency bias (BIAS) score, have been
calculated to examine the impact of merging large-scale
information with mesoscale analysis on precipitation
forecasts, which are shown with different thresholds for
24 h forecasts in Fig. 15. The ETS score is defined as
follows (Shuman®):

H-FO/N

ETS F+O-H-FO/N ®

Here, F is the forecast area, H is the correctly forecasted

(a) ETS scores of 24 h precipitation forecast
BCNTL B ESBM M UK H JKCA GADN

area (“hits”), O is the observed area, and N denotes the
total number of verification points or events. FO/N is the
hits expected from a random forecast. The ETS score
measures the fraction of observed and/or forecast events
that are correctly predicted, adjusted for correct
predictions due to random chance. The bias score is
defined as follows (Mcbride and Ebert™):
FA+H
BIAS= MoH ©)

Here, FA is the false alarm area and M is the missing
area. The bias score is equal to the area of rain forecasts
divided by the total area of observations of rain. Thus, the
bias score measures the relative frequency of rain
forecasts compared with observations. Larger ETS values
indicate higher QPF accuracy while BIAS values above
(below) 1 imply an overestimate (underestimate).

(b) BIAS scores of 24 h precipitation forecast
BECNTL B ESBM M K H JKCA GADN
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Figure 15. ETS and BIAS scores for the 24 h precipitation forecast. (a) ETS score; (b) BIAS core. The precipitation threshold score of
0.1-10 mm/d (light precipitation), 10-25 mm/d (moderate precipitation), 25-50 mm/d (large precipitation), 50-100 mm/d (heavy
precipitation), greater than 100 mm/d (severe heavy precipitation) are shown in the color bar.

The verification is against the dataset from 24 h of
cumulative precipitation in 2,500 rain gauge stations over
China. Compared to the T639 analysis downscaling
forecast, the CNTL experiment has a poor ETS score for
a light precipitation threshold of 0.1 mm/d, and the
performance of the BIAS score is also less than that of
GADN. The wundesirable ETS and BIAS light
precipitation scores mean that the CNTL precipitation
forecast pattern is significantly different from the
observations. The ETS score of the CNTL experiment
forecast is better than that of the GADN experiment for a
moderate precipitation threshold of 10 mm/d. Moderate
precipitation is generally caused by persistent
precipitation. The GADN and CNTL experiments have
clearly shown the characteristics of both global analysis
downscaling and mesoscale analysis from continuously
cycled analysis. Experiment GADN provides useful
large-scale information but with a poor description of
mesoscale information. In contrast, experiment CNTL
provides improved mesoscale information but with
distorted large-scale information.

For experiment ESBM with a cutoff wavelength of
1,200 km, the ETS score for light precipitation is
dramatically improved compared with that of experiment
CNTL and is closer to that of experiment GADN. For
moderate precipitation and large precipitation, the ESBM
experiment forecasts are far superior to those of
experiments GADN and CNTL. This superiority could
also be found for the heavy precipitation threshold of 50
mm/d. The heavy precipitation is generally caused by
severe convective systems whose spatial scales are
smaller. From the precipitation verification score, we find
that the explicit spatial blending method could take
advantage of both large-scale information from global
analysis and mesoscale information from CCDA. The JK
experiment has a similar performance to experiment
ESBM for the light precipitation ETS score but has a
clear benefit for moderate and large precipitation ETS
scores. The BIAS scores of experiment JK are slightly
larger than those of experiment ESBM, which means that
precipitation is slightly overestimated. This benefit of
experiment JK may come from a well-balanced
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small-scale structure in the initial condition in the
constraining method, as displayed and discussed in the
last section. According to the three-dimensional cloud
analysis, it is clear that for almost all precipitation
thresholds, experiment JKCA is better than experiment
JK and experiment ESBM. The dominant information in
the cloud analysis comes from radar reflectivity. This
result is not surprising and again confirms that merging
both the large-scale and mesoscale information will
improve the precipitation forecast. For cloud-resolving
model resolution and a small domain with a few
observations, the constraining method is better than the
blending method in this case study.

6 CONCLUSIONS

GRAPES-Meso 4.0 suffers from the weakness of
large model bias, deficiency of locally dense observation
data, and the absence of satellite radiance data, which can
be quite important over the ocean. To reduce the error of
the GRAPES-Meso analysis, we adopt the blending
method from Yang™ and the constraining method from
Guidard and Fischer®™ to merge the large-scale analysis
information from the T639 global model with the
mesoscale analysis data from GRAPES-Meso 3Dvar.
Both methods are utilized in GRAPES-Meso CCDA. An
extremely severe precipitation event in northern China on
19-20 July 2016 is selected for study in this paper. The 24
h period CCDA with a 3 h updated analysis cycle is used
to obtain the initial condition, after which a 24 h forecast
is performed. Comparative studies of the blending and
constraining method are performed to find a suitable
method for GRAPES-Meso CCDA.

In experiment ESBM, larger-scale information in the
initial field is directly replaced by T639 large-scale
information through the explicit spatial blending method,
while experiment JK only uses the weighted constraint
term in the cost function of 3DVar to force the analysis
field to be closer to the global larger-scale information.
The initial fields are cut off at the 600 km wavelength to
represent large-scale information and compared with
ERA data at 0.5 resolution. The wind components of
experiment JK are slightly worse than those of
experiment ESBM, but they are all better than those of
experiment CNTL. For temperature and specific
humidity, the result is neutral. At the same time, the
convection systems in the initial field are also improved,
especially for experiment ESBM, while experiment JK
shows slight improvement. Comparing the 3 h
background with the radiosonde observation shows that
after introducing large-scale information, the background
is slightly closer to the radiosonde observations, and
experiment ESBM is better than experiment JK. This
means that blending and constraining T639 large-scale
information into the GRAPES mesoscale analysis is
superior to not using that information. Because the
constraining method is based on 3DVar to merge
large-scale information, the balance between wind and

mass is better than that of explicit spatial blending; the
latter utilizes spatial interpolating, transforming, and
blending procedures, which will cause an imbalance
problem in the blended analysis field.

In this study, the weakness of the constraining
method is mainly focused on the assumption that the
large-scale analysis error covariance matrix for wind,
temperature, and humidity is an uncorrelated diagonal
matrix. Dahlgren and Gustafsson used the same
approach but only assimilated the vorticity field from the
global analysis with global analysis error covariances that
are not simplified by a diagonal matrix, as in Guidard and
Fischer®. This study provides preliminary research on
improving the analysis error covariance. The large-scale
error covariance matrix still needs to be enhanced to
better represent large-scale analysis information
introduced in mesoscale analysis. The simplification of
the large-scale analysis error covariance matrix in this
study is one of the major reasons why experiment JK is
not as effective as ESBM in the analysis verification.
Meanwhile, accurately providing large-scale analysis
error variance is important for experiment JK.

For the forecast performance, the impact of the
blending and constraining method is significant at first for
the 12 h forecast period for convection systems. The
evolution of the belt-shaped convection system is
described better by experiment ESBM than by experiment
JK. Experiment CNTL is worse than experiments ESBM
and JK. When focused on the full model domain, the 24 h
precipitation forecast verified by ETS score and BIAS
score clearly shows that experiment JK is better than
experiment ESBM. When comparing experiment JKCA
and the other experiments, the results show that for the
mesoscale analysis, the dominant impact came from the
mesoscale observation information, such as the radar
reflectivity data used in the cloud analysis, which will
influence the forecast. Overall, the 24 h precipitation
forecast of experiment JKCA is the best among all the
experiments.

It is important to note that almost equally good
performance could be found in both methods, but the
blending method is more effective in introducing the
large-scale analysis. In our study, either the analysis or
forecast derived by the blending or constraining method
indeed offers better performance than the original
GRAPES-Meso or T639 methods. Moreover, the
technical realization of explicit spatial blending is more
complicated and tedious, and the variety of the cutoff
wavelengths on different variables and different model
levels are not taken into account. Additionally, the
computation cost is only slightly increased in the
constraining method.

It should be noted that the research findings in this
paper are mainly based on a case study, and certain
randomness is inevitable. Therefore, a series of batch
experiments to sufficiently verify the results will be
included in the future work. Nevertheless, the analysis
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and forecasts are effectively improved in this study,
which provides a reference for subsequent improvement
of the GRAPES-Meso analysis.
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