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Abstract: To reduce the spatial correlation of representation error in observations and computational complexity, we
propose a thinning scheme that can extract typical observations within a certain range. This scheme is applied to the
Global/Regional Assimilation and Prediction System (GRAPES) with three-dimensional variation (3DVAR) to study the
effect of the thinning radius on the assimilation results. The assimilation experiments indicate that when the ratio of the

model resolution to the observational resolution is 1:3, the simulated results for precipitation are relatively good and
have a relatively high equitable threat score (ETS). Moreover, the analysis errors in the temperature and the specific
humidity are the smallest, the dependence of the norm gradient vector of the objective function on the number of
iterations is slow, gentle, and close to 0, and the minimization results in improved conditions.
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1 INTRODUCTION

The wvariation method has become the most
common assimilation method (Lewis and Derber ;
Dimet and Talagrand™; Talagrand and Courtier™). The
basic idea of three-dimensional variation (3DVAR) is to
provide an optimal estimate of atmospheric data based
on observed forecast fields and to express the problem
as one that minimizes the objective function (Lorenc™),
namely, minimization of the quadratic functional
between the analytical field and the observation field
and between the analytical field and the background
field. The objective function can be written as

J(x):]b"']o:% [x —xb]TB_l [x _xb]—‘r% [H(x)—D’o]T (0+F)_1

[H(x)=y0] (1)

Here, J, is called the background term, and J, is the
observation term. x represents the atmospheric state, x,
represents the background field, y, contains the known
observation data, B is the error covariance matrix of the
background field, O is the error covariance matrix of
the observational data, H is the observation operator,
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and F is the representative error covariance matrix of
the observation operator H.

During the process of assimilation, an optimal
analysis is conducted based on the statistical knowledge
of the background error and observation error. The
observation error can be divided into two components:
the instrumental error of a measuring device and the
representativeness error of an observation operator
(Daley™; Schwartz and Benjamin™®). The former is often
considered to be white Gaussian noise and usually
derived from instruments of the same specifications or
measurements of the same variable (Richner and
Phillips™). The latter is generated when the observation
operator is converted from the model space to the
observation space. It is thought to be responsible for
spatial correlations in the observational error; it is
difficult to estimate and expensive to specify in the
minimization of the cost function (Lorenc; Daley™).
Liu and Rabier demonstrated in a simple
one-dimensional (1D)  framework  that  the
representativeness error depends on a resolution
function of the measuring instrument, observation
density, model grid resolution, and specification of an
observation operator™. For observations with spatially
uncorrelated errors, increasing the observation density
generally improves the analysis accuracy. However, for
observations with spatially correlated errors, increasing
the observation density beyond a threshold value will
yield little or no improvement in the analysis accuracy.
Bondarenko et al. expanded these studies to
two-dimensional space and found that the observation
error correlation coefficients should not exceed 0.3,
which can be ignored in the assimilation without
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deteriorating the analysis quality®™. However, the above
studies are purely statistical and can only provide
general guidelines because they do not target at real
atmospheric  situations. An observation may be
representative of the atmospheric state over a wide area
under stable weather conditions; however, this is not the
case during stormy conditions. The situation in a real
practical 3-D NWP (Numerical Weather Prediction)
model is more sophisticated and requires further study.

Observation error correlations are difficult to
estimate and expensive to specify in the assimilation
process in operational practice, so the optimal analysis is
usually not achievable. As a consequence, a suboptimal
assimilation scheme is always used, in which the
observation errors are assumed to be uncorrelated, thus,
the observations with strongly correlated errors must be
filtered out before assimilation. The error-decorrelation
operation is called observation thinning, which is an
efficient way to reduce -effective error-correlation
(Jirvinen and Undén!'?).

On the other hand, high spatial density and
temporal density of observations are potentially valuable
for estimating an initial state in an operational data
assimilation system. However, assimilating such a large
number of observational datasets increases the
computational costs, takes up more disk space, and
leads to more time-consuming data transmission.
Moreover, the high spatial and temporal data density
can violate the assumption of independent observation
errors in the operational and experimental assimilation
schemes (Ochotta et al.!). In variational assimilation
systems, the error correlations are unknown a priori,
accounting for estimations of these correlations would
require more complex observation error statistics,
leading to an additional increase in computational costs.
Therefore, we need to reduce the amount of data and
extract the essential information.

In operational NWP, some scholars have proposed
other thinning methods and applied them to intensive
data. The simplest method may be the subsampling
thinning approach, which systematically retains a few
observations  ( Bradley™ ). Ramachandran proposed
intelligent data thinning (IDT) (Ramachandran et al.!};
Ramachandran et al.[), and Zavodsky et al.™ found
that the IDT algorithm resulted in the lowest RMS error
over the coastal region where meteorological gradients
are common, although it performed poorly over
homogeneous regions. Ochotta et al.!"! discussed two
thinning  algorithms, which were devised and
implemented for the thinning of Advanced TIROS
Operational Vertical Sounder (ATOVS) satellite data.
The first was called top-down clustering, which groups
observations with similar spatial positions and
measurement values into clusters that can be
approximated by one representative measurement, and
the second thins data through an estimation polynomial
function and removes redundant measurements. The

results showed that the two methods have their own
advantages and disadvantages.

The above methods have been widely applied for
the thinning of satellite data (Qin et al. ™), but for
surface observations, thinning methods have rarely been
studied. This paper explores a new thinning scheme for
real situations in heavy rainfall cases using a practical
3-D NWP model.

This paper is organized as follows. In the next
section, we discuss the data and experiment design.
Then, we introduce the thinning method and its
application in detail. In sections 3 and 4, we present
experimental results and investigations. Finally, we
summarize our findings and address future work.

2 DATA AND METHODS

2.1 Data

In January 2008, frequent blizzards occurred in
most regions of China, causing serious low-temperature
hazards, such as rain, snow, and ice. In this study,
because we only assimilate surface pressure in our
experiments, the variable in the state vector x and the
observation vector y, in equation (1) is the surface
pressure with one level. The pressure (y,) data derive
from surface synoptic observations (SYNOP) between
0000 UTC on January 1, 2008, and 1800 UTC on
January 30, 2008, and the temporal resolution is three
hours. There are 3,340 observation stations in the
research region 0-70°N, 55-145°E.

Because the observation elements are continuous in
space, the observations used in this study are highly
correlated within a certain range. As shown in Fig.1, by
calculating the distance between two observation
stations and the corresponding surface pressure
correlation coefficient, the surface pressure is very
similar between the two stations, indicating strong
correlations. We typically assume the observation error
to be uncorrelated and filter out the observations with
strongly correlated errors to meet the assumption as
much as possible. However, in operational practice, the
observation error correlations are difficult to estimate
and expensive to specify in the assimilation process. We
believe that thinning the observations can reduce the
observations with strongly correlated errors and meet
the assumption to some extent. In this paper, we apply
the regional model of the Global/Regional Assimilation
and Prediction System (GRAPES) to examine the
thinning and assimilation of observation data; the
assimilated variable is the surface pressure.

2.2 Experiment design

“GRAPES” is a type of new generation numerical
forecasting system, developed independently by Chinese
scientists (Wang et al. ). The GRAPES regional
mesoscale numerical forecasting system
(GRAPES Meso) is an important part of the basic
GRAPES system. It has been continuously improved
according to the weather characteristics of China since
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its implementation for operational application in the
National Meteorological Center of China in 2006. The
GRAPES Meso model is currently used by many
researchers (Wang et al.'®; Yang and Shen"”; Liu et al.”™).
The GRAPES Meso model (along with its assimilation
system) used in this paper is V3.1.0.1.
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Figure 1. Scatter plot of the distance between two observation

stations and their correlation coefficient (the red straight line
represents the fitted line).

In the GRAPES model, the observation operator H
can be written as follows:

H=H, HH,

Here, H, is the spatial interpolation operator, which
interpolates variables from grid points to observation
locations; bilinear interpolation and cubic spline
interpolation are used in the horizontal and vertical
dimensions, respectively. H, represents a physical
transformation operation, which converts the model
variables to observation variables. When the observation

2618 > 2700 2706

A 4

2712

A 4

variable is pressure, the physical transformation in the
observation operator converts the dimensionless pressure
to pressure. H, indicates the quality control based on
observations and simulated observations.

Because we assimilate only surface pressure in our
experiments, the variable in the state vector x is the
surface pressure with one level. The pressure data are
obtained from SYNOP between 0000 UTC on January
1, 2008, and 1800 UTC on January 30, 2008, and the
temporal resolution is three hours. There are 3,340
observation stations in the research region 0-70°N, 55—
145°E. The variable in the observation vector y, is the
only surface pressure at the stations.

There are 301 x 241 grid points in the numerical
simulation. The coordinate center is (111°E, 29°N),
which is located in Changde, Hunan, China. There are
49 levels in the vertical dimension and the top pressure
is 35 hPa. The model uses the WDM-6 microphysical
scheme, the Grell-3 cumulus parameterization scheme,
the MYJ boundary layer scheme, the Dudhia shortwave
radiation scheme, the RRTM longwave radiation
scheme and the Noah land surface process scheme.

The assimilation experiments are designed as
follows:

(1) Using Global Forecast System (GFS) data as
the initial field and boundary conditions, the
experiments are first integrated from 1800 UTC on
January 26 to 0000 UTC on January 27. Next, the
results of 0000 UTC on January 27 from the GRAPES
model are used as the background data, and we
assimilate surface pressure at this time; by using this
analogy, we assimilate surface data five times at
six-hour intervals. Lastly, the experiments are integrated
for 24 hours to obtain the final numerical results. Fig.2
shows the assimilation process:

1
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Figure 2. Flowchart for the assimilation process. y* indicates surface observations.

(2) To study the effect of the thinning radius on
assimilation, six different radii are used. y° in each
experiment indicates the observations with different
thinning radii.

(3) The background error covariance B is obtained
using the NMC (National Meteorological Center)
method (Wang et all), and the observed error
covariance is the default value from the model.

2.3 Thinning scheme

The subsampling thinning approach chooses data
every few observations; thus, the data retained by this
method is random and may not represent the
characteristics of the removed data. As mentioned
above, the IDT method performed well over the coastal
region and poorly over homogeneous regions. Surface
stations in the eastern part of China are densely
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distributed and relatively uniform, so the IDT method is
not suitable for surface observations used in this paper.
While top-down clustering thinning and polynomial
function thinning retain data that are different from
surrounding observations, those data cannot effectively
represent the variable characteristics of the study area.
Thus, it is necessary to design a new thinning scheme
for surface observations. The thinning scheme should be
suitable for any area, including coastal regions and
homogeneous regions, and more importantly, the data
retained by the thinning scheme should represent the
variable characteristics of the study area.

Due to the high correlation between two adjacent
measurement stations, the scheme adopted for thinning
the observation data is as follows.

(1) With the model grid as the center and r as the
radius, calculate the temporal correlation coefficient
between each observation station and the other stations
within this radius.

(2) Calculate the average correlation coefficient
between each observation station within this radius and
all nearby stations.

(3) Select the observation station with the largest
average correlation coefficient within this radius.

The circles in the thinning scheme overlap. If an
observation is located in the overlap of the circles, we
retain this observation for only the overlapping circles.
The purpose of this operation is to select typical
representative  observations within the radius; a
schematic of the grid points and the thinning radius is
shown in Fig.3.

The model resolution selected in this experiment is
0.3°, namely, dx=dy =30 km, and the values of the
radius, r, are 30, 60, 90, 120, and 150 km. Fig.4 shows
the distribution of observation stations for different
thinning radii, and Fig.4a shows the actual spatial
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Figure 3. Schematic of the thinning scheme, where dx and dy
are the model resolution in the longitudinal and latitudinal
directions, respectively, and r represents the thinning radius.
Each point represents an observation; the red point represents
the typical observation within the radius.

distribution of the surface observation stations. The
observation stations are densely distributed in the
eastern part of China, and the horizontal spacing is
approximately 20-30 km. According to Figs.4b—4f, as
the thinning radius becomes larger, the distribution of
stations becomes sparser. The numbers of observations
are 2,804, 2,096, 1,552, 1,271, and 1,062 for =30, 60,
90, 120, and 150, respectively. Moreover, in the eastern
part of China, the stations are essentially uniformly
distributed.
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Figure 4. Distribution of observation stations for different thinning radii: (a) =0 km (no thinning), (b) r=30 km, (¢) r=60 km, (d)
=90 km, (e) =120 km, and (f) =150 km. The different colors represent the elevation of the observation stations (unit: m). The
number in the lower-right corner represents the number of observations retained for different thinning radii.

3 DESCRIPTION OF THE WEATHER PRO-
CESS

There was a notable precipitation process in
southern China on January 27 -29, 2008. The
precipitation during this period was mainly due to a
strong blocking high that was steadily maintained over
western Siberia. The cold, dry air converged with warm,
moist air brought by the southern branch of a trough
and the subtropical high over the middle and lower
reaches of the Yangtze River and southern China, which
caused a large-scale weather pattern conducive to rain,
snow, and ice.

Figure 5 shows the actual 24-h precipitation from
0000 UTC on January 28 to 0000 UTC on January 29.
The cumulative precipitation field is obtained from
station observations. Precipitation values are interpolated
from sites to model grids (30 kmx 30 km) based on the
Cressman interpolation method.
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Figure 5. The 24-h cumulative precipitation from 0000 UTC on
January 28 to 0000 UTC on January 29 from surface stations.



No.3 ZHAO Hong (i iT) and LIU Yin (X] ) 339

According to Fig.5, the precipitation was mainly
concentrated in the southeastern coastal region of China
with a southwest-northeast orientation. There were two
relatively large precipitation centers in the precipitation
zone. One was located in the southern part of Yunnan
province, where the rainfall exceeded 20 mm, and the
other was located at the border of the four provinces. In
it, the amount of precipitation was greater than 30 mm.

4 ANALYSIS OF THE ASSIMILATION EX-
PERIMENT RESULTS

4.1 The 24-h cumulative precipitation
We used GRAPES-3DVAR to assimilate the
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surface pressure under different thinning radii and
control the quality of these observations. Through bulk
assimilation experiments, we studied the influence of
different thinning radii on the simulation performance of
the model. Fig.6 shows the 24-h cumulative
precipitation from 0000 UT on January 28 to 0000 UTC
on January 29 for different thinning radii. The 24-h
cumulative precipitation derive from numerical model
outputs, which is integrated for 24 hours from the
analyzed field at 0000 UTC on January 28 using
GRAPES model. The resolution of the modeled
precipitation is 30 kmx30 km.
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Figure 6. The 24-h cumulative precipitation from 0000 UTC on January 28 to 0000 UTC on January 29: (a) =0 km (non-thining);
(b) =30 km; (c) =60 km; (d) =90 km; (e) =120 km; and (f) =150 km (unit: mm).
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When the resolution of the model grid was set to
0.3°, the area with more than 25 mm of precipitation
increased and expanded southward to cover all of
Zhejiang. When the thinning radius was set to 30 km,
the area with more than 25 mm of precipitation
remained relatively large, and a precipitation center with
more than 50 mm of precipitation appeared north of
Hangzhou Bay. When r was 60 km, the area with more
than 25 mm of precipitation increased and extended
from northern Hunan and Jiangxi southward to their
central and southern regions. Moreover, the area with
more than 50 mm of precipitation increased, and the
center moved into the southern part of Anhui. When r
was 90 km, the area with more than 25 mm of
precipitation shrank to a long, narrow zone stretching
across the four provinces of Hunan, Jiangxi, Anhui, and
Zhejiang with a southwest-northeast trend; in addition,
there was a small precipitation center on the border of
Jiangxi and Fujian. In this experiment, the center with
excessive precipitation (more than 50 mm) disappeared.
When =120 km, the spatial distribution of precipitation
was similar to the distribution for =90 km; the area of
the southern precipitation center with more than 25 mm
of precipitation increased and extended eastward to the
southern part of Zhejiang. When r=150 km, the arca
with more than 25 mm of precipitation was very large,
and the precipitation zone expanded southward to
include Hunan, Jiangxi, and most regions of Zhejiang.
Moreover, a precipitation center with more than 50 mm
of precipitation appeared at the border of Anhui,
Jiangxi, and Zhejiang. Compared with the precipitation
results for other thinning radii, the area and amount of
precipitation of the precipitation center for a thinning
radius of 90 km was closest to the actual situation.

4.2 ETS Score

The Equitable Threat Score (ETS) can effectively
evaluate the simulation ability of each experiment.
ETS <0 indicates an invalid forecast, ETS>0 indicates a
valid forecast, and ETS=0 denotes the best forecast. The
formula for the ETS is

_ NR()
S N NN R (@) M
and

_ (NAAN(N+Np)

RO N NNV, 2)

Ny, Ny, No and N, are defined in Table 1:

Table 1. Classification of the precipitation test.

observe\forecast Yes No
Yes N, Ne
No Ny Ny

Figures 7 and 8 show the 24-h cumulative
precipitation ETS score and the 6-h cumulative
precipitation ETS score, respectively, for different

experiments. The precipitation scores of the different
experiments indicate that when the thinning radius was
set to 90 km, the model performed well at forecasting
the amount of precipitation. For the 6-h cumulative
precipitation, when the thinning radius was set to 90
km, the improvement in the estimate of the low level of
precipitation was relatively obvious (8a and 8b).

0.6~

0.4 4

0.2 4

0.0~
0.lmm 1.0mm 5.0mm 10.0mm 15.0mm 20.0mm 25.0mm

=0l =30l ool —oo I 120l 150

Figure 7. ETS of the 24-h cumulative precipitation from
0000 UTC on January 28 to 0000 UTC on January 29, 2008,
in the different experiments.

4.3 Inwestigation of the reason for the improvement in
the precipitation estimates

In the numerical model, we applied five
intermittent assimilation processes to the pressure. Fig.9
shows the variation of the analysis error in the surface
specific humidity and the surface temperature with the
thinning radius for the five intermittent assimilation
processes. The analysis error on the surface specific
humidity and temperature in Fig.9 is the error between
analysis field and surface observations. We interpolate
the values at grids to stations using the bilinear method
and then calculate the average error between them.

According to Fig.9, the analysis error of the
specific humidity increased, decreased, and then
increased again as the thinning radius increased. In
particular, when the thinning radius was set to 90 km,
the analysis error in the specific humidity reached a
minimum in most of these five assimilation processes.
Similar to the specific humidity, the analysis error in the
surface temperature first increased, decreased and then
slowly increased again as the thinning radius increased,
it was smallest when the thinning radius was set to 90
km.

As shown in Fig.9, the analysis error in the specific
humidity and surface temperature reached a minimum
in most of the five assimilation processes when the
thinning radius was set to 90 km. The analysis error
was larger for both 90 km and r<90 km, which means
that the thinning scheme proposed in this paper has an
optimal thinning radius. The results obtained using the
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operational 3-D variational assimilation system were values for small values of r, more experiments are
similar to those from the ideal 1-D wvariational needed.

assimilation system'. Therefore, to understand the large
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Figure 8. ETS of the 6-h cumulative precipitation when it was greater than (a) 0.1 mm, (b) 1 mm, (¢) 5 mm, and (d) 10 mm in
different experiments.
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Figure 9. Variation in the analysis error in the surface specific humidity (a, unit: g/lkg) and the surface temperature (b, unit: K)
with thinning radius (unit: km).
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In GRAPES-3DVAR, the minimization algorithm
adopts the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) algorithm, i.e., the limited-memory
BFGS method, to solve the problem, and the number of
iterations is set to 100. Because the cost function in the
five experiments has different orders of magnitude, we
process the cost function with normalization. Fig.10
shows the variation of the normalized cost function J,
(10a) and the norm gradient vector G, (10b) with the
number of iterations for different thinning radii. The
cost function decreased as the number of iterations
increased, and the minimization process converged in
all of the experiments. Saturation was reached after 20

iterations of the minimization algorithm. Regardless, the
decrease in the cost function in the experiment with
=90 km performed the best for all cases, reaching
saturation after only 10 iterations, which means most of
the data misfit between the model and observations was
reduced earlier than in other experiments (Zou et al.”).

During the minimization process, G decreased
constantly, and, eventually, the normalized J approached
a stable value, while G continuously approached 0. For
different thinning radii, the numbers of iterations used
for the objective function were 50, 42, 37, 49, and 44.
When the thinning radius was set to r=90 km, the
number of iterations was smallest.
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Figure 10. Variation of the normalized objective function / (a), the norm gradient vector G with the number of iterations for
different thinning radii (unit: km) (b) and the norm gradient vector G for 20-50 iterations (c).

With three-dimensional variations, the ideal
situation is that when the objective function reaches the
optimum solution, the norm gradient vector G
approaches 0. However, because the numerical model is
complex and the assimilation data are uncertain, this
ideal model is very difficult to obtain. This is mainly
because the accuracy of the model does not reflect its
agreement with the observation data ( Zupanski® ;
Zupanski and Mesinger ™, Zupanski®'; Tsuyuki®). To
further understand the variation in G with the number of

iterations for different thinning radii, we expanded the
region with 20-50 iterations in Fig.10b (Fig.10c). When
the thinning radius was set to 30, 60, 120, or 150 km,
the norm gradient vector G exhibited a relatively
vigorous saw-tooth pattern as the number of iterations
increased. When the thinning radius was set to 90 km,
the norm gradient vector G exhibited relatively slow and
gentle variations with the number of iterations, and the
value of the norm gradient vector G was very close to
0. This result indicates that the minimization was
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improved when the thinning radius was 90 km.
4.4 Investigation of the reason for the improvement in
the precipitation estimates

We performed another set of experiments with a
model resolution of 0.15°; the corresponding values of
the radius (r) were 15, 30, 45, 60 and 75 km. Fig.11
shows the 24-h cumulative precipitation ETS scores of
different experiments with a model resolution of 0.15°.
The result suggests that when the thinning radius was
set to 45 km or 60 km, the model performed better at
predicting precipitation than the other experiments.
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Figure 11. ETS of the 24-h cumulative precipitation from
0000 UTC on January 28 to 0000 UTC on January 29, 2008 in
the different experiments with a model resolution of 0.15°.
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Figure 12 shows the norm gradient vector G versus
the number of iterations for different thinning radii.
Additionally, we expanded that with 20-50 iterations.
Using different thinning radii with a model resolution of
0.15°, the numbers of iterations applied in the objective
function were 48, 45, 41, 41 and 46. The iteration was
terminated first when the thinning radius was set to
r=45 km or =60 km, and the norm of gradient vector
of the two experiments became steady after 10 iterations
(Fig.12a). From the expanded G (Fig.12b), it could be
found that the experiments with r=45 km and r=60 km
performed better than other experiments. Although the
G of the two experiments still exhibited a saw-tooth
pattern as the number of iterations increased, slower and
more moderate variations than other experiments were
observed with the value of G closer to 0. Moreover, the
G of the r=45 km experiment was slightly better than
that of the =60 km experiment.

The results of experiments with a model resolution
of 0.15° show that when the ratio between the model
resolution and observation radius is 1:3 or 1:4, the
precipitation scores of different levels are relatively
high, and the minimizations are improved. The ratio of
1:3 is slightly better than that of 1:4. However, because
we performed only two sets of experiments for the
precipitation case, the conclusions have some
limitations. More cases of the thinning scheme are
needed to be studied and definite conclusions are
expected to be made.

80 -
(b)
60 -

40

20+

Norm of Gradient vector

0 T T 1
20 30 40 50

Number of iterations

=15 r=30

=45 =60 =175

Figure 12. Variation in the norm gradient vector G with the number of iterations for different thinning radii (unit: km) (a) and the
norm gradient vector G for 20-50 iterations (b) in the different experiments with a model resolution of 0.15°.

5 SUMMARY AND DISCUSSION

In this paper, to reduce the strong correlation of the
representation error in observations and agree with the
assumption of data assimilation, we propose a scheme
for the spatial thinning of observation data based on the

correlation coefficient between two observation stations.
The main conclusions are as follows:

(1) Due to the high correlation between two
adjacent observation stations, the thinning scheme
described in this paper can select the optimum
observation site within the observation radius.
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(2) The use of this scheme in two sets of
experiments in GRAPES-3DVAR indicates that when
the ratio between the model resolution and observation
radius is 1:3, the simulated results for the precipitation
are closer to the actual situation and the precipitation
scores at different times and for different levels are also
relatively high. If the thinning radius is too large or too
small, the improvement in the precipitation estimates is
less than ideal.

(3) The reason for the improvement in the
precipitation estimates is that when the model resolution
and observation radius was 1:3, the error in the
analytical field for specific humidity and temperature
was the smallest, and the norm gradient vector G of the
decrease in the cost function was close to 0. Moreover,
the change is slow and gentle, which indicates that it
reaches a quasi-stationary state in which the accuracy of
the model and its agreement with the observation data
are optimal.

In this paper, we conduct a preliminary
investigation and study the agreement between the
thinning radius and the model resolution. In the future,
we will need more cases to study the application of this
scheme in detail and to derive systematic conclusions.
The experiments with other thinning schemes and a
comparison of the difference between them will be
conducted in our future study.
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