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Abstract: Deviation exists between measured and simulated microwave radiometer sounding data. The bias results in
low-accuracy atmospheric temperature and humidity profiles simulated by Back Propagation artificial neural network
models. This paper evaluated a retrieving atmospheric temperature and humidity profiles method by adopting an input
data adjustment-based Back Propagation artificial neural networks model. First, the sounding data acquired at a Nanjing
meteorological site in June 2014 were inputted into the MonoRTM Radiative transfer model to simulate atmospheric
downwelling radiance at the 22 spectral channels from 22.234GHz to 58.8GHz, and we performed a comparison and
analysis of the real observed data; an adjustment model for the measured microwave radiometer sounding data was
built. Second, we simulated the sounding data of the 22 channels using the sounding data acquired at the site from 2011
to 2013. Based on the simulated rightness temperature data and the sounding data, BP neural network-based models
were trained for the retrieval of atmospheric temperature, water vapor density and relative humidity profiles. Finally, we
applied the adjustment model to the microwave radiometer sounding data collected in July 2014, generating the
corrected data. After that, we inputted the corrected data into the BP neural network regression model to predict the
atmospheric temperature, vapor density and relative humidity profile at 58 high levels from 0 to 10 km. We evaluated
our model's effect by comparing its output with the real measured data and the microwave radiometer's own
second-level product. The experiments showed that the inversion model improves atmospheric temperature and humidity
profile retrieval accuracy; the atmospheric temperature RMS error is between 1K and 2.0K; the water vapor density's

RMS error is between 0.2 g/m® and 1.93g/m’ and the relative humidity's RMS error is between 2.5% and 18.6%.
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1 INTRODUCTION

Atmospheric temperature and humidity are critical
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variables for atmospheric and environmental studies.
Acquirement of temperature and humidity profiles in
continuous time is very important for understanding
weather development and predicting weather in various
scales (Liu et al. ™; Han and West @; Li and Zeng ™).
Although possessing a high degree of representation and
credibility, conventional sounding data are increasingly
unable to suit the needs of modern meteorological
development because of low temporal resolution (Liu et
al. ™). Because the ground-based microwave radiometer
has many advantages, such as high temporal resolution,
high sounding accuracy and simple operation, it has
become an important instrument for atmospheric
sounding and has been applied in many fields (Yao and
Chen P, Wang et al.'). The ground-based microwave
radiometer can obtain atmospheric temperature, relative
humidity and liquid water profile at a range of 0-10
km, and these data are continuous in time. These data,
combined with continuous wind profile data, have
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become an important reference for short-term weather
forecasting (Yao and Chen ). Some experts have
suggested that the microwave radiometer should play a
significant role in future atmospheric detection systems,
as microwave detection technology is approaching
maturity (Liu et al. ™). Therefore, the study of the
inversion of atmospheric temperature and the humidity
profile using data from microwave radiometers has
scientific significance and potential application value
(Huang et al. ).

The models for atmospheric temperature and
humidity retrieval mainly include regression models,
physical models and artificial neural network models
(Wang et al.'; Martin et al.”’). Methods using regression
models are relatively simple but do not achieve high
accuracy for complicated relations. Methods using
physical models are computationally intensive and time
consuming. However, the artificial neural network
algorithm has obvious advantages. For example, it does
not need the complex relationships of physical models,
nor does it need to exert great effort to find a formula
for retrieving variables; however, it can describe the
non-linear relation between radiance and atmospheric
variables and is very convenient to use. Therefore,
artificial neural networks were usually used to develop
operational systems (Wang et al. @), With the
advancement of artificial neural network technology, it is
also used in the field of microwave remote sensing, in
particular atmospheric profile inversion (Huang et al.®).

The ground-based microwave radiometer used in
this experiment, MP-3000A, was purchased from
Radiometrics in the United States. It uses an artificial
neural network model to achieve the atmospheric
temperature and humidity profile. However, the
coefficients of the network cannot be modified; thus, it
is difficult for users to adjust the network to improve
the inversion accuracy. In addition, our experiments
showed the persistence of a certain deviation between
the measured and simulated brightness temperature,
although the microwave radiometer was calibrated (see
Fig.1). However, the inversion program combined with
the instrument is unable to deal with these deviations.
Therefore, this paper used the monochromatic radiative
transfer model (MonoRTM, Liu et al.”?) to simulate the
brightness temperature according to the figuration of the
ground-based microwave radiometer based on the
sounding data at a meteorological observation station in
Nanjing and compared the simulated and measured
radiance to build bias-correction models for the
measured radiance. Then, a localized backpropagation
(BP) neural network was established for atmospheric
temperature and humidity profile inversion based on the
simulated radiance and sounding data. Finally,
bias-correction models were used to correct the
measured radiance at 22 spectral bands, and the
corrected radiances were inputted into the BP neural
network to estimate the atmospheric temperature and

humidity profile. The inversion results were compared
with the level-2 products of the ground-based
microwave radiometric, and their accuracy was
evaluated.

2 DATA AND METHOD

2.1 Data introduction

Obtained at the meteorological observation station
of Jiangsu Meteorological Bureau, the data included the
radiosonde data of the temperature and humidity
profiles and ground-based microwave radiometer data.
The microwave radiometer data were provided by the
projects listed at the foot of the first page of this paper.
In order to obtain enough samples to develop the BP
neural network, the radiosonde data of the temperature
and humidity profiles from 2011 to 2013 were
downloaded from the Wyoming State University
database (http://weather.uwyo.edu/upperair/seasia.html).
In the experiment program, the MP-3000 microwave
radiometer was placed in the station to obtain
atmospheric microwave downwelling in June and July,
2014 and obtained 65 samples under clear or cloudy
conditions at 8:00 a.m. or 8:00 p.m. Beijing time.

The MP-3000 microwave radiometer provides a
total of 22 channels, and the center frequencies are
between 22.234 GHz and 58.800 GHz. Among them,
the first 14 channels correspond to water-vapor
absorption channels detecting water vapor in the
atmosphere and the last eight channels are oxygen
absorption channels detecting atmospheric temperature.
The microwave radiometer outputs a set of data every
minute, which includes four kinds of data as shown
below.

(1) Level-0 as unprocessed raw data;

(2) Level-1 as brightness temperature data from
level 0 data;

(3) Level-2 as the atmospheric temperature, relative
humidity and liquid water profile products on 58 levels
of altitude, derived from the built-in neural network
algorithm of MP-3000 microwave radiometer.

(4) TIP calibration file.

In the experiment, level-1 and level-2 data were
used. Level-1 brightness temperature data were used to
retrieve the atmospheric temperature and moisture
profile, and level-2 data were used to evaluate the
accuracy of MP-3000 products. The radiosonde data
were used to simulate downwelling radiance, and then
the bias-correction models were built. In addition, the
radiosonde data were used to evaluate the accuracy of
MP-3000 level-2 products and the inversion results.

In order to make the height of the levels of
radiosonde data match that of the MP-3000 level-2
products, linear interpolation was performed on the
radiosonde data, and a set of radiosonde data at the 58
levels was acquired in the 0-10 km atmospheric layer.
Water vapor density data cannot be directly obtained by
radiosonde. In order to study water vapor density
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inversion, formulas (1) and (2) were used to calculate
the water vapor density of each level (Sheng et al.l').

) . « (T=273.16
e=6.1078*U*exp 17708 (T429.3298) M
e 2
P 0.004615*%T @

where the parameter e represents water vapor pressure, ¢
is atmospheric temperature, u is relative humidity and p
is vapor density.
2.2 Simulation of the downwelling radiance using
MonoRTM

In order to build a BP neural network for
atmospheric temperature and moisture retrieval, a great
deal of microwave radiometer data are needed. In
general, the numerical simulation method is used to
obtain the data. In the experiments, MonoRTM was
used to simulate atmospheric downwelling radiance at
the 22 MP-3000 microwave spectral bands based on the
radiosonde data acquired at the Nanjing station from
2011 to 2013. The atmospheric parameters and
microwave radiometer configuration parameters can be
inputted by revising the 10 parameter files of
MonoRTM according to the real atmospheric condition
and instrumental configuration. The atmospheric
variables include atmospheric temperature, pressure,
relative humidity, and liquid water content, which are
from the radiosonde data. The microwave radiometer
configuration parameters include the number of spectral
bands and their channel frequencies (Liu et al. 7). The
MonoRTM model has the input parameter of the liquid
water content. Therefore, it can not only be used to
simulate atmospheric downwelling radiance under
clear-sky conditions but also to simulate downwelling
radiance under cloudy conditions. However, due to the
constraints of the objective conditions, the conventional
radiosonde cannot provide cloudy liquid water content.
In this paper, the method used by Liu ™ and Zhang
was applied to estimate the cloud liquid water content.
If the relative humidity of the whole atmosphere was
lower than 85%, the weather condition was considered
clear sky, and the liquid water concentration was set to
0 g/m’. If there were atmospheric layers for which
relative humidity was not less than 85% , it was
considered cloudy. For cloudy-sky conditions, two
methods were applied to calculate cloudy liquid water
content: The cloud water content was set to 0.5g/m’ if
the relative humidity was greater than 95%, whereas the
cloud water content was calculated by a certain linear
equation if the relative humidity was between 85% and
95% (Liu et al.”; Huang et al.™).
2.3 Building the bias —correction models for MP-3000
level-1 data

Although MP-3000 had been calibrated before the
observation experiments were conducted, the measured
brightness temperature was not consistent with the
simulated with a systematic error. Based on the 35

observation data for June 2014, a scatter diagram of the
measured and simulated brightness temperature was
plotted (Fig.1). Fig.1 shows that there is significant
deviation between the measured and simulated
brightness temperature at the spectral bands about the
water vapor absorption channels (a-c) and oxygen
absorption channels (d-i). The difference between the
measured and simulated brightness temperatures of
some samples even exceeds 10K.

In order to correct the deviation of the measured
brightness temperature, static regression methods were
used to develop the bias-correction models for 22
spectral bands (Table 1).

2.4 Development of inversion model

BP neural network algorithm is a relatively mature
and widely used nonlinear inversion algorithm. It has
been successfully used in atmospheric parameter
inversion (Wang et al. I Wang et al. ™). In the
experiment, three BP neural networks were established
for the estimation of atmospheric temperature, relative
humidity and water-vapor density. The input layer of
networks had 25 neurons corresponding to the 22 band
brightness  temperature, atmospheric  temperature,
pressure and relative humidity of the near-surface layer.
The output layer of each network contained 58 nodes
corresponding to the 58 heights, which were consistent
with the heights of the ground-based microwave
radiometer level-2 product.

The performance of the neural network is affected
by the number of nodes in the hidden layer. Insufficient
hidden nodes will make the network lack sufficient
information, thus reducing the accuracy of the whole
network. However, an excessive number of hidden
nodes requires too much training time, depressing the
calculation efficiency of the network (Hecht-Nielsen!?;
Wang™). A number of research methods were proposed
to calculate the number of hidden nodes (Cimini et al.';
Boukabara et al.™; Zhao!; Zhou!""). In the experiment,
these methods were compared. Considering the
consumption time and inversion accuracy, 30 nodes
were set in the hidden layer (Martin et al. ¥}
Hecht-Nielsen [; Zhao ['9).

The performance of the neural networks is also
related to their transfer function apart from the structure
of the network. In the networks, the hidden layer
employed the hyperbolic S transfer function named
Tansig, whose input data might be an arbitrary value
and output data was between -1 and 1. The output layer
employed the linear transfer function named Purelin.

2.5 Accuracy analysis

In order to evaluate the inversion models, the mean
error (ME) and root mean square error (RMSE) at the
58 heights were calculated with the radiosonde as the
standard. In addition, the level-2 products of MP-3000
were also validated using the same method. ME and
RMSE are defined as below.
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Figure 1. Scatter diagrams of the simulated and observed brightness temperatures in 26.234GHz through 53.848GHZ channels.

Table 1. The correction models for MP-3000 22 channels

f/GHz Linear fitting equation R? f/GHz Linear fitting equation R?
22.234 Y=0.99575X+2.1078 0.9384 52.804 Y=0.7811X+39.425 0.6629
225 Y=0.9615X+1.9817 0.9357 53.336 Y=0.7757X+48.35 0.6455
23.034 Y=0.9515X+3.2138 0.9248 53.848 Y=0.7872X+51.974 0.6489
23.834 Y=0.964X+5.1675 0.8845 54.4 Y=0.8911X+27.975 0.8577
25 Y=0.894X+7.0311 0.8582 54.94 Y=0.866X+38.929 0.9288
26.234 Y=0.843X+8.2024 0.81 55.5 Y=0.8807X+33.555 0.8901
28 Y=0.7971X+7.8881 0.7692 56.02 Y=0.8329X+49.003 0.9215
30 Y=0.8917X+5.6407 0.7505 56.66 Y=0.8952X+30.796 0.9216
51.248 Y=0.7315X+28.22 0.6476 57.288 Y=0.9173X+24.405 0.9265
51.76 Y=0.7584X+29.478 0.6667 57.964 Y=0.9015X+28.978 0.9506
52.28 Y=0.7429X+38.45 0.6494 58.8 Y=0.9119X+26.061 0.9509
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ME=L Y (- v) 3)
n =

RMSE=/ ,17 (1= v (4)

where n is the number of total samples at a certain
level, v, is the radiosonde data, u, is the inversion data
or the MP-3000 level-2 products including atmospheric
temperature, relative humidity or water vapor density
(Liu et al.l).

The main process of estimation of atmospheric
temperature and humidity profile based on the BP
neural networks is as follows. First, the BP neural
networks were trained using the simulated microwave
radiometer data and radiosonde data obtained from 2011
to 2013 in order to fit the coefficients of the network
and build the inversion models. Second, the 30 groups
of observation from MP-3000 in July 2014 were
bias-corrected and were then inputted to the trained
neural networks to estimate atmospheric temperature,
relative humidity and water vapor density. Finally, the
inversion results and MP-3000 level-2 products were
validated by the radiosonde data, and the accuracy was
evaluated.

3 RESULTS AND ANALYSIS

3.1 Atmospheric temperature inversion
3.1.1 CASE STUDIES

In the experiments, two cloudy-sky cases were
studied at 0000 UTC and 1200 UTC on 8th July. Fig.2
(a and b) shows the atmospheric temperature profiles
from the inversion experiments, MP-3000 and
radiosonde data. As shown in Fig.2, the variation trends
in atmospheric temperature are similar, which increase
as the height increases. However, the MP-3000 data
underestimate atmospheric temperature, in particular
above 3km. In addition, the temperature profiles from
the inversion experiments are closer to the radiosonde
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profile. The estimated temperature profiles of the
experiments more accurately reflect the actual vertical
distribution of atmospheric temperature.

3.1.2 STATISTICAL ANALYSIS FOR THE MAE AND RSME
ATMOSPHERIC TEMPERATURE

Figure 3 shows the mean absolute error (MAE)
and root mean square error (RMSE) of the estimated
atmospheric  temperature and  MP-3000 level-2
temperature products. In Fig.3, BPNN represents the
retrieved temperature of the experiments, and
RadiomeNN represents the temperature product of the
microwave radiometer. As seen in Fig.3, the difference
in MAE and RMSE of the MP-3000 level-2 temperature
products at different heights is very apparent in the
layer below 4 km. The MAE at surface, 1km and 3km
is positive, while it is negative at the heights of 0.5km
and 1.5km. The RMSE near the surface is
approximately 1.5K; nevertheless, it is relatively high
(about 4K) at a height of 1 km. Above 4km, the MAE
and RMSE of the microwave radiometer temperature
products increase rapidly, and their values reach 5.78K
and 6.78K at 10km, respectively. Plainly, the error of
MP-3000 is very high.

Figure 3 shows that the error of the inversion
experiments is relatively small. Below a height of 1 km,
the MAE of temperature is positive, less than 0.3K;
above 3 km, the MAE of temperature is negative, less
than 0.7K. The RMSE of retrieved temperature
continues to increase from 1K to 2K as the height
increase in the 10km atmospheric layer. Compared to
the MP-3000 temperature products, the estimated
temperature has higher accuracy. In addition, the
brightness temperature without bias correction was also
inputted into the BP neural network to retrieve the
atmospheric temperature. Comparing the inversion
results with bias-correction and without bias-correction,
it is apparent that bias-correction significantly improves
the accuracy of the estimated atmospheric temperature.
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Figure 2. The retrieved temperature, MP-3000 level-2 temperature products and radiosonde data at 0000 UTC (a) and 1200 UTC

(b) on 8th July, 2014.
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Figure 3. Mean error and root mean square error of retrieved atmospheric temperature and level-2 products of microwave

radiometer at the 0—10km height.

3.2 Atmospheric water vapor density
3.2.1 CASE STUDY

Figure 4 (a) and (b) show the atmospheric water
vapor density profiles from the inversion experiments,
MP-3000 and radiosonde data at 00 UTC and 12 UTC
on 8th July, respectively. As shown in Fig. 5, the water
vapor density profiles are very close, which illustrates
that the three kinds of data are similar, but the retrieved
water vapor density profile is closer to the radiosonde
data, especially at 0 to 1 km. The microwave
radiometer products overestimate water vapor density;
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nevertheless, the inversion results of this paper can
better represent the actual vertical distribution of water
vapor density.

3.2.2 STATISTICAL ANALYSIS FOR THE MAE AND RSME OF
WATER VAPOR DENSITY

Figure 5 shows the mean absolute error (MAE)
and root mean square error (RMSE) of the estimated
atmospheric water vapor content and MP-3000 level-2
products. As shown in Fig.5, the MAE (-3.7 g/m®) and
the RMSE (3.9 g/m’) of the water vapor density product
of MP-3000 are relatively high in the atmospheric layer
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Figure 4. The retrieved atmospheric water vapor density, MP-3000 level-2 products and radiosonde at 0000 UTC (a) and 1200

UTC (b) of July 8.
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below 0.3 km. In the layer of 0.5-2.25 km, the MAE
(from 0.7 g/m’ to 0.7 g/m*) and RMSE (<2.2 g/m°) are
relatively small. The MAE and RMSE rapidly increase
above a height of 2.3 km and reach the maximum of
-4.89 g/m’ and 6.8 g/m’ at the 2.75 km height. Then,
the MAE and RMSE gradually decrease, and positive
deviation appears from the 6.75 km height.

As seen in Fig.5, the MAE and RMSE of the
estimated water vapor density product are relatively

10

small (from -0.24 g/m’® to 0.23 g/m® and 0.2 g/m’ to
1.93 g/m’, respectively), and the maximal RMSE
appears at a height of 1 km. Compared with the
MP-3000 products, the accuracy of estimated water
vapor density is greatly improved, in particular in the
layers below 0.5 km and heights within the range 2.25-
6.25km. In addition, the results show that the
bias-correction significantly improves the accuracy of
estimated water vapor content.

/
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—=— MAE(before BPNN revision)
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MAE (RadiomeNN)

—— RMSE(before BPNN revision )
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Figure 5. Mean error and root mean square error of retrieved atmospheric humidity and level-2 products of microwave radiometer

at the 0—10km height.

3.3 Relative humidity
3.3.1 CASE STUDY

Figure 6 (a and b) shows the atmospheric relative
humidity profiles from the inversion experiments,
MP-3000 and radiosonde data at 0000 UTC and 1200
UTC on 8th July, respectively. As shown in Fig.6, the
three types of data are similar. Compared with MP-3000
production, the estimated relative humidity profile is
more consistent with the radiosonde. In particular in the
layer at O~lkm, the microwave radiometer product
underestimates the relative humidity; however, the
estimated relative humidity more accurately illustrates
the vertical distribution of relative humidity.
3.3.2 STATISTICAL ANALYSIS FOR MAE AND RSME

Figure 7 shows the mean absolute error (MAE)
and root mean square error (RMSE) of the estimated
atmospheric relative moisture and MP-3000 level-2
products. As shown in Fig.4, the MAE of MP-3000
product is positive in the layers below 2.5 km and
above 6.8 km, and the MAE is highest (22.8%) at a
height of 0.6 km. In the atmospheric layer between 2.75
and 6.75 km, the MAE of the MP-3000 product is

negative, and the MAE is highest (-43%) at a height of
4.25 km. Obviously, the MP-3000 overestimated
atmospheric relative moisture in the layers below 2.5
km and above 6.8 km but underestimated relative
moisture in the layer between 2.75 and 6.75 km. The
RMSE of atmospheric relative moisture is small (6.5%—
17.8% ) in the layer below 0.5 km, but it is higher
(19.8%-50.5%) in the layer above it. Fig.7 shows that
the MAE of relative humidity is between -3.7% and
3.8%, and the RMSE is between 2.5% and 18.6%.
Compared with MP-3000 relative humidity production,
the accuracy of the inversion data is higher. In addition,
bias correction significantly improves the accuracy of
relative humidity estimation.
3.4 Analysis of the inversion error

Although the developed inversion method acquired
higher accuracy for the estimation of atmospheric
temperature and humidity profiles compared with the
MP-3000 products, there is still some deviation
compared with the radiosonde. The possible causes of
the error are as follows: (1) A linear empirical model
was used to calculate cloudy liquid water content that
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(b) of 8th July.

10

height (KM)

0 1 1 = | 1
-50 -30 -10 10 30 50
error (%)
—=—MAE(before BPNN revision) ——RMSE (before BPNN revision )
——MAE((aller BPNN revision) ——RMSE(after BPNN revision)
MAE (RadiomeNN) RMSE(RadiomeNN)
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will introduce error in brightness temperature
simulation; (2) the BP neural network model’s
inversion accuracy is affected by the samples for
training; thus, enough accurate and representative
samples make the network more accurate. However,
both the simulated microwave data and radiosonde data
exhibit errors. They also bring the error to the inversion
results; (3) radiosonde data error will pass on to the
simulated data, affecting the accuracy of the inversion
models. In addition, radiosonde data are the standard to
calculate MAE and RMSE; thus, its error affects the
calculation of inversion accuracy.

4 CONCLUSIONS

This paper focused on a method to retrieve
atmospheric temperature, water vapor density and
relative humidity from a ground-based microwave
radiometer. Three inversion models were developed
using the MonoRTM radiative transfer model and BP
neural network. The models were used to estimate the
atmospheric temperature and humidity profiles, and the
accuracies were analyzed. Some conclusions were
drawn as follows.

(1) In the troposphere, the estimated atmospheric
temperature is very similar to the radiosonde data, and
the MAE between the two data is not bigger than 0.4 K.
However, the maximal MAE of the MP-3000
temperature products reaches 6 K. Comparing the
estimated atmospheric temperature and MP-3000
temperature product, the developed BP neural network
model significantly improves the accuracies of the
atmospheric temperature estimation.

(2) The retrieved atmospheric water vapor density
and relative humidity consist of radiosonde data, and the
MAEs are from -0.24 to -0.23 g/m’ and from -3.7% to
-3.5%, respectively; the RMSEs are from 0.20 to 1.93
g/m3 and from 2.5% to 18.6%, respectively. However,
the maximal RMSEs of MP-3000 products are 6.8 g/m3
and 49% , respectively. Comparing the estimated
atmospheric humidity and MP-3000 products, the BP
neural network models developed in the study
significantly improve the accuracy of atmospheric
humidity estimation. In addition, the bias-correction for
the measured brightness temperature also improves the
inversion accuracies.

(3) In the experiment, we just acquired two-month

measurement data. In order to improve the accuracies of
the atmospheric temperature and humidity estimation,
we need more data to calibrate and validate the models
in future work. In addition, building inversion models
for clear sky and cloudy sky conditions is a method to
improve the inversion accuracies.
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