Vol.24 No.2 JOURNAL OF TROPICAL METEOROLOGY June 2018

Article ID: 1006-8775(2018) 02-0163-13
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Abstract: In order to achieve the best predictive effect of the Partial Least Squares (PLS) regression model, Particle
Swarm Optimization (PSO) algorithm is applied to automatically filter the optimal subset of a set of candidate factors of
PLS regression model in this study. An improved version of the Particle Swarm Optimization-Partial Least Squares
(PSO-PLS) regression model is applied to the station data of precipitation in Southwest China during flood season.
Using the PSO-PLS regression method, the prediction of flood season precipitation in Southwest China has been
studied. By introducing the precipitation period series of the mean generating function (MGF) extension as an
alternative factor, the MGF improved PSO-PLS regression model was also built up to improve the prediction results.
Randomly selected 10%, 20%, 30% of the modeling samples were used as a test trial; random cross validation was
conducted on the MGF improved PSO-PLS regression model. The results show that the accuracy of PSO-PLS regression
model and the MGF improved PSO-PLS regression model are better than that of the traditional PLS regression model.
The training results of the three prediction models with regard to the regional and single station precipitation are
considerable, whereas the forecast results indicate that the PSO-PLS regression method and the MGF improved
PSO-PLS regression method are much better than the traditional PLS regression method. The MGF improved PSO-PLS
regression model has the best forecast performance on precipitation anomaly during the flood season in the southwest of
China among three models. The average precipitation (PS score) of 36 stations is 74.7. With the increase of the number
of modeling samples, the PS score remained stable. This shows that the PSO algorithm is objective and stable. The
MGF improved PSO-PLS regression prediction model is also showed to have good prediction stability and ability.
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1 INTRODUCTION

Southwest China locates in the transition zone from
the Qinghai-Tibet Plateau to the plain south of the
Yangtze River, with features of complex terrain and
local synoptic factors and is also a typical climate
change area (Hua et al.™). Because Southwest China
belongs to the subtropical monsoon area, it is affected
by the southwest monsoon significantly with distinct dry
and wet season; relevant statistics show that more than
50% of precipitation in Southwest China originates from
summer flood season. In recent years, affected by global
warming, a series of drought and flood events with
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increased frequency and enhanced intensity occurred in
Southwest China. In the summer of 2013, five strong
storms hit Sichuan province persistently. Till 2014, six
consecutive years of drought had been observed during
winter and spring in Yunnan province. Along with the
significant global warming since the end of the 1990s
(Shen et al.®), Trenberth and Kharin et al. pointed out
that an increase in the ground temperature intensifies
the surface evaporation, which increases the moisture in
the atmosphere, resulting in more possibility of
precipitation P4, On the other hand, enhanced
evaporation of land surface makes the local drought
more likely to occur and uneven distribution of rainfall
also increases at the same time. After the analysis of the
precipitation sensitivity of the spatial resolution in all
the sub-regions over China, Zhong et al. found that
among the climatic regions, it is the southwest region
where the detection and prediction of climate variability
is the most difficult P. The difficulty of precipitation
prediction significantly increases due to the regional
geography characteristics of the southwest region. The
frequent occurrence of short term heavy rainfall events
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often leads to landslides, flash floods, and other
geological disasters, which significantly threat human
life and property.

The PLS regression method is an extension of the
least square (LS) method, which was originally
proposed by Wold et al. (1983) in the 1970s . At the
beginning of the 1980s, it was successfully used in the
industrial field, after which its applications were quickly
expanded to other areas. Compared with LS or other
modeling methods, PLS regression model was simple,
robust, efficient in its calculations, highly accurate, and
did not need removal of any explanatory variables or
sample points. Wold et al., Hoskuldsson, and Geladi et
al. point out that for the problem of constructing a
regression model with multiple independent variables,
when there are high correlation among the set of
variables, modeling with partial least squares regression
analysis is more effective than multiple regression, with
more reliable forecast and stronger consistency overall™.
Ertag et al. use nonlinear time series and variable
selection method to improve the PLS technology to
predict the monthly mean air temperature in Istanbul!.
They consider temperature, humidity, precipitation, and
other elements as predictors and compare the improved
PLS with ordinary least square, PLS, and artificial
neural network prediction model and prove that the
technology has higher prediction accuracy than that of
the others.

At present, the forecast accuracy of rainfall in
flood season based on climate numerical model is still
under development (Kulkarni et al.'"'; Wang et al.l').
Statistical model is an effective method for short term
climate prediction. The initial multiple regression
model is generally linear and the determination of its
parameters depends on the LS method. However, there
is an approximate linear relationship between multiple
independent variables, which makes the regression
equation unstable. Massy proposes the principal
component regression method, which is based on
biased estimates and overcomes issues with the
estimation of the instability caused by the
multicollinearity problem ™. Hoerl proposes another
geometric approach, the Ridge estimate(RE)™. Webster
proposes the latent root regression, which is improved
for multicollinearity!.

The traditional regression technique often has a
non-optimization problem, i.e. it cannot “rationally”
filter out a number of factors from an alternative large
number of independent variables to establish the
so-called optimal regression equation. With the
development of computational methods and advances in
computers, Furnival and Sehatzoff propose an
exhaustive "all possible" regression algorithm that
greatly reduce the amount of computation required; as
such, the problem of optimal regression could be solved
more thoroughly !*'"). However, the linear regression

equation does not reflect the nonlinear relationship
between the forecasting factor and the predictor.
Therefore, the introduction of a nonlinear regression
method is necessary.

PLS regression method solves the problem of
collinearity (Wold et al.!'®; Abdi et al.™); it is also
known as a new generation regression method. A
prefect statistical model consists of the algorithm and
the predictor selection. In the aspect of predictor
selection, it is difficult to select the predictors
automatically and artificial screening is required, which
leads to the existence of subjective and personal
dependence. In this study, a new prediction model is
proposed, namely, PSO-PLS regression model. The
method uses the PSO algorithm to automatically select
the optimal factor combination automatically and
objectively, and then the predictors are utilized and the
precipitation is forecasted by PLS regression method. It
inherits the excellence of PLS regression model,
supplies the automatic selection of factors at the same
time. In this article, it is applied to forecast the
precipitation of flood season in Southwest China. The
article is arranged as follows: data and evaluation
criteria are introduced in section 1. In section 2, the
basic theory and routine of establishment of PSO-PLS
are described. The results and assessments of PSO-PLS
are discussed in section 3. In section 4, PSO-PLS is
compared with traditional PLS and the MGF-improved
PSO-PLS. Random cross validation is also conducted to
check the stability of the improved PSO-PLS model.
Conclusions are drawn in section 5.

2 DATA AND EVALUATION CRITERIA

2.1 Data

The monthly average precipitation data of 160
stations during 1951—2014 in China is from the
National Climate Center of CMA. Among them, 36
stations  (Zhijiang, Liuzhou, Nanning, Beihai, Baise,
Zunyi, Guiyang, Bijie, Xingren, Rongjiang, Enshi,
Daxian, Youyang, Chongqging, Nanchong, Neijiang,
Mianyang, Chengdu, Yibin, Ya’an, Kangding, Xichang,
Huili, Lijiang, Dali, Baoshan, Kunming, Lincang, Meng,
Jinghong, Ganzi, Deqin, Qamdo, Hanzhong, Ankang,
and Yushu) are selected to represent entire Southwest
China (97-110°E, 21-34°N) (Yan et al.®”) (all stations
distribution is shown in Fig.1). The regional average
value of total precipitation from June to August of the
36 stations represents the entire region precipitation in
flood season in  Southwest China. Hereafter,
precipitation during the flood season in Southwest China
is shortened as PreFS.

The forecast factors are selected from the 126
indexes data offered by the National Climate Center.
The indexes include the circulation index, SST index,
zonal wind index, and teleconnection index. They extend
from 1951 to 2014, with a summation of 64 years.
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Figure 1. The distribution of 36 stations in Southwest China.

2.2 Evaluation criteria

In order to evaluate the prediction of stations and
whole region PreFS values, root mean square error
(RMSE), mean absolute error (MAE), anomaly
correlation coefficient (ACC), and prediction skill score
(PS) between the predicted and observed PreFS are
calculated and compared.

RMSE is also known as standard deviation error.
The root of the mean square deviation between the
observed and the predicted values is shown as follows:

2 (X obsi — X ﬁil‘,i)z
RMSE=}| *+— @

n
where n is the number of measuring times; X,,; — X,
(=1,2,3 -+ n) represents the deviation between the i-th
pair of observed and predicted values.

MAE is the average of the absolute value of the
deviation between the observed value and the predicted
value. Because each sample of MAE is no less than
zero (absolute value), MAE does not denote any
positive or negative phase offset. MAE can better reflect
the actual situation of the error between the prediction
value and the observed value than average error whose
positive deviation samples counteract the negative
samples.

MAE=}T D X X | )
i=1

The symbols on the right hand side are similar to

Eq. (D).
ACC is a criterion recommended by the World

Meteorological Organization in 1996. It is the
correlation coefficient between the predicted anomaly
and the observed anomaly, which reflects the
consistency of the predicted anomaly and the observed

anomaly in space distribution. The expression is:
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where N is the number of total stations; AR, and AR,;
are predicted and observed anomaly of the i-th station,

respectively; AR, and ARo are the mean predicted and
observed anomaly values of all stations, respectively.

PS score (Jin et al.®") is a widely used assessment
in short term climate prediction in China to evaluate the
forecast results of multiple stations. Its expression is

_ Ngt+P,xN+PxN,

= NEPoN PN, x100 )]
where P, represents PS score, N is the total stations
number, N, is the sum number of the normal level
stations, which include the same or counter symbol
between the forecast and the observation anomaly. N, is
the number of stations with corrected prediction of the
first level anomaly. N, is the number of stations with
corrected prediction of the second level anomaly. P
represents the weight coefficient, P=5 and Py=2
represent the weighing parameters of successful
prediction of the first and second level anomaly,
respectively. Table 1 lists the trend forecast diction and
classification standard of a five-level system of rainfall.
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Table 1. Glossaries of trend forecasting and classifying criterion in a 5-degree prediction skill (PS) scheme.

Level Diction (precipitation) Percentage of precipitation anomaly/% (seasonal scale)
1 Extreme drought AR<-50
2 Moderate drought —50<<AR<-20
3 Normal -20<<AR<20
4 Moderate flood 20<AR<50
5 Extreme flood AR =50

3 ESTABLISHMENT OF THE PREDICTION
REGRESSION MODEL PSO-PLS

3.1 Screening of predictive factors

PSO algorithm, also named as particulate swarm
algorithm, was proposed by Kennedy et al. based on the
group behavior of birds and fish in 1995 ™. The basic
principles derive from the theory of artificial life and
evolutionary computation. By imitating the flying and
foraging behaviors of birds, it is expected to carry out
the searching global optimization solution. The core
idea is to use the birds collective collaborate to achieve
the best gain of the group (Eberhart et al.”™; Kennedy et
al.™). In this study, this algorithm is used to choose the
predictors at the initial stage.

At the moment of ¢+1, the speed and position
update formula of PSO algorithm are as follows:

+1 t

t t t t
vy =w><vid+clxrlx(pBestM—xid)+cz><r2><(gBestgd—xi,,)

1 )

= xi’d vy (6)
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X
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In Eq.(5), vi. , 1s the d-dimensional velocity of the
particle i at iteration time f#; ¢, and ¢, are accelerating
coefficients (also known as learning factors), which
adjust the maximum step size of the particle flight toward
the individual best particle and the global best particle,
respectively. If the acceleration coefficient is too small,
the particles may be too far away behind to reach the
target area. If it is very big, it may fly to the target area
suddenly or fly over the target area (Eberhart at al.¥).
The suitable magnitudes of ¢; and ¢, can accelerate
convergence and the solutions are not easy to fall into
local optimum. Usually define ¢=c,=2; r, and r, are
random numbers in the range of [0, 1] (Kennedy et al.™).

The x.

. 1s the current d-dimensional position of the

particle ¢ at iteration time ¢. pBest,, is the position of
the individual’s d-dimensional extreme best points of

the particle i. gBest , is the position of the global

d-dimensional extreme best point of the whole group. In
order to prevent the particles from leaving the search
space, each of the particles in the one-dimensional
velocity v, is limited within the range [t Van- If
v 18 to0 large, particles will fly away from the best
solution; too small particles will tend to fall into the
local optimum (Eberhart et al. ™). w is the inertia
weight, which is used to optimize the search for the

solution. The related research shows that the larger
inertia weight is beneficial to the global optimization,
and the smaller inertia weight is beneficial to the local
optimization. The iterative formula of inertia weight
coefficient is

@, = @y —tX (=@ i ) s @)

In Eq. (7), t represents the iteration number, f,,,
represents the maximum number of iterations. ,,, and
W, are the maximum and minimum inertia weight
coefficients, they are assigned to 09 and 04,
respectively (Liu et al.*¥).

The PSO algorithm is also required to select the
appropriate fitness function to evaluate the alternative
particle's efficiency. Fitness function is defined as the
reciprocal of quadratic sum of training error between
normalized observed and predicted precipitation:

e @®)

N

> (R,.-R.)

=1

In Eq. (8), N is the station number and R,; is the
normalized value of the observed precipitation of
stations. R,; is the fitted normalized precipitation of
stations.

Because the goal is to select factors, position
vector is stored through binary coding. Each component
of the position vector of the particle can only take the
value of 0 or 1. The velocity vector of the particle
represents the probability of being 1 at the next
position. This class of PSO solving the discrete space
problem is also known as binary particle swarm
optimization (BPSO) (Kennedy et al.”; Ying et al.™).
BPSO generally uses the Sigmoid function to handle
Due to the original Sigmoid function making BPSO
strongly random, the lack of local detection ability
makes it difficult to converge to the global optimal
position. In this paper, the improved Sigmoid function is
used to enhance the local detection ability of BPSO,
which is beneficial to the convergence of the particle to
the optimal position of the population (Liu®).

The improved Sigmoid function formula is (Liu™):

1—127, v
s(vi)= +2e xp(-va)
-1, v,>0

)

1+exp(-viy)
The position change formula for BPSO is (Liu®):
-+ 1, I‘< Si 1}:
X En) (10)
09 r= Sig(U id )
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In Eq. (10), r is a random number between 0 and 1.

PSO algorithm is used to select the optimal subset
consisting of 4-6 predictors from the primary circulation
factors. The main process of screening is as follows:

(1) Candidate predictors for selection are chosen
from the 126 indexes of the particular months of the
present year (January and February) and the previous
year  (From March to December). Correlation
coefficients are calculated, and the most relevant factors
of the summer flood season precipitation of each station
are selected based on the threshold correlation
coefficient 0.3 and the number of factors is limited to
no more than 15. These factors make up an alternative
population.

0
(2) Initialization. The initial search point x, and

0
speed v, are generated randomly within specified range.
The pBest coordinates of each particle are set at their

present  position. The corresponding individual
extremum (i.e., the fitness value of the individual
extreme points) is calculated. The global extremum (i.e.,
the fitness value of the global extreme points) is the
best value among all the individuals. Then, the particle
number of the best value is recorded, and the gBest is
set to the present position of the best particle.

(3) Assessment of each particle. The fitness value
of each particle is calculated. If the fitness value is
better than the current individual extremum, pBest is
renewed to the position of the corresponding particle,
and the individual extremum is updated to the fitness
value. If the individual extremum of all particles is
better than the present global extremum, then gBest is
set to the position of the individual particle, and the
number of the particle is recorded. The global
extremum is updated similarly.

Random initialization position and velocity of particles in population

v

Calculate the fitness of each particle

N

v

Updated particle’s pBest and gBest , replace the most advantage ||

.

According to the iterative formula (5) and (6), update the speed

and position of each particle

v

Determine whether the termination conditions are

met

End

Figure 2. Particle swarm optimization (PSO) selecting factors flow chart.

(4) Particle update. According to the iterative
formula (5) and (6), the velocity and position of each
particle are iteratively updated.

(5) Termination check of iteration. If the current

iteration number is up to the maximum number of
preset times or the error of iteration less than the
preset minimum threshold error, the iteration is
stopped, then the optimal solution is output with the
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optimal combination of predictors containing 4-6
members. If the termination conditions are not met,
switch to step (2).

Using the PSO algorithm to select predictors can
liberate humans from factor screening, and exclude
those factors that have a good correlation with the
predictor but are poor for modeling or forecasting. The
algorithm requires little in computational resource and
can filter out the best combination of factors
automatically. Thus, it has good efficiency on factor
screening.

3.2 Establishment of the forecasting model

Multicollinearity ~ defects  often  appear in
multi-factor prediction problems. The PLS regression
model can solve it (Wold et al. ™). By using PLS
regression to obtain the final prediction equation
coefficients, the prediction equation of PreFS at each
station or of the entire region is established. The
modeling steps of PLS are as follows.

First step: The optimal combination of predictors
selected through PSO algorithm is substituted into the
flood season precipitation training equation. Then, the
precipitation samples are normalized, and the PLS
regression method is used to extract the first component

2
of the sample, and the cross validity test Q, is obtained
(Wang PY) (please refer to the reference section for the

calculation of QT).

Second step: If QT =0.0975, it shows that the

introduction of new principal components has a
significant improvement in the predictive power of the
model; in this case, the first step is repeated. Otherwise,
the solution to the main component of the cycle process
is over.

Third step: After determining the number of the
principal components, the regression coefficients of the
predictors are obtained, and the forecasting equation is
determined.

Fourth step: Taking the PrePS (precipitation in the
previous season) as the historical observation data and
the predictors selected through the PSO algorithm, the
prediction model is established. The fitness or predicted
results of the PrePS are obtained.

4 RESULTS OF THE MODEL AND TEST

4.1 Fitness value analysis of optimal subset

Each optimal subset has commonality across the
fitness values (from low to high) during the iteration
process. For example, at Zunyi station, we analyzed the
evolution of the characteristics of the fitness value of
predictors optimal subset in the process of iterative
using particle swarm algorithm. Fig.1 shows the curve
fitting of fitness value of Zunyi station. As can be seen
from Fig.1, after the iteration time reach 23, the fitness
function value entered a state of convergence and the
corresponding fitness value is 0.0394. The fitness

function value increased to 0.0394 from 0.0287, i.e., an
increase of 0.0107. Therefore, the predictor’s optimal
subset selected using the particle swarm algorithm has
better fitting effect when compared with the general
predictors subset.
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Figure 3. The simulated precipitation prediction fitness
functions of PSO-PLS at Zunyi, the abscissa denotes PSO
iteration times, and the y-axis denotes the global optimal fitness
function.

4.2 Prediction results of the model

The PSO-PLS model is used to fit and predict the
PreFS of 36 stations and the whole region. A total of
54-year section of dataset, which consists of PreFS from
1952 to 2005 and corresponding circulation indexes, are
used. First, predictors are selected by PSO algorithm.
Then, the whole region precipitation forecast model is
established. And a 9-year (2006—2014) predictive
experiment of the PreFS is carried out.

Figure 4 shows the training and forecast results of
PSO-PLS model, together with the corresponding
observation of PreFS. Table 2 shows the assessment
statistics of the results. Modeling forecast results show
that the forecast ACC is 0.31. This is acceptable even
though the training result is much better comparatively.
Moreover, RMSE, MAE, and ACC of the fitting results
between 1952 and 2005 are 29.72, 24.21, and 0.79,
respectively. The RMSE, MAE, and ACC of forecast
results between 2006 and 2014 are 68.08, 51.67, and
0.31, respectively.

Table 2. The statistical assessments fitted/forecasted regional
rainfall of flood season over southwestern China by PSO-PLS
regression method.

Fitted value Forecast value
RMSE(mm) 29.72 63.08
MAE(mm) 24.21 50.67
ACC 0.79 0.31

In addition, the PSO-PLS models are established
for 36 stations separately. The modeling data are from
1952 to 2008, and the forecast experiment temporal
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range is from 2009 to 2014. Forecast results show that
the 36 stations mean value of test ACC is 0.32, which
is similar to the entire region value. These results show
that the forecast ability of PSO-PLS is acceptable and
stable. The mean value of the PS score for forecasting
the flood season precipitation in Southwest China
during the flood season is 73.07, with the highest score
of 87.5 in 2009 and the lowest of 62.5 in 2011 (as
shown in Table 6).
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Figure 4. The yearly observed and fitted/forecasted regional
rainfall during the flood season over southwestern China by
PSO-PLS regression method (The fitness period is from 1951
to 2005, and the forecasting period ranges between 2006 and
2014. The periods are separated by a vertical line in the panel).

5 COMPARISON AND IMPROVEMENT OF
THE MODEL

5.1 Comparison of models

In order to make a more intuitive description of the
improvement of PSO-PLS, it is compared with the PLS
model without any optimization. The PLS models are
established for 36 stations separately and for the
regional PreFS, then the corresponding training and
prediction results are obtained. Model training period is
1952—2005, and the trial period is 2006—2014.

For the case of the whole region precipitation, the
training and forecast results of PLS forecasting model
are shown in Fig.5, together with the comparison
observed PreFS. Table 3 shows the inspection results of
prediction results by PLS model. Results show that the
training ACC during 1952—2005 is 0.78, and the
predictive ACC is 0.15. By comparing with the

corresponding values in Table 2, only small differences
are evident between the fitting results of the two
models, whereas the forecast results of PSO-PLS
regression model are much better than the traditional
PLS regression model.
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Figure 5. Same as Fig.4, but for the PLS regression method.

Table 3. Same as Table 2, but for PLS regression method.

Fitted value Forecast value

RMSE(mm) 29.96 74.05
MAE(mm) 23.52 56.89
ACC 0.78 0.15

The 36 stations mean value of forecast ACC based
on the PLS regression model is 0.24 (the corresponding
value of PSO-PLS is 0.32). The mean value of the PS
score for PreFS is 71.1 (the corresponding value of
PSO-PLS is 73.07), the highest score is 80.8 in 2014,
and the lowest is 59.5 in 2011 (as shown in Table 6).
The comparison of mean ACCs and PS scores indicates
that PSO-PLS has advantage of PLS model.

A comparison between the modeling results of
PSO-PLS method and PLS method is shown in Table 4.
RMSE! and MAEl and RMSE2 and MAE2 represent
the average values of the root mean square error and
mean deviation of training and forecast cases,
respectively. It shows that the fitting results of two
methods are considerable. However, the forecast results
show that PSO-PLS is superior to the PLS method in
terms of RMSE, MAE, ACC, and PS score.

Table 4. Comparison between PSO-PLS and PLS on the statistical quantities of fitted/forecasted regional rainfall of flood season

over southwestern China by PSO-PLS regression method.

RMSE1 RMSE2 MAE1 MAE2 ACC PS score
PLS 29.96 74.05 23.52 56.89 0.15 71.10
PSO-PLS 29.72 63.08 24.21 50.67 0.32 73.07

5.2 Improvement of model
As depicted above, the PSO-PLS is better than
PLS method on predictive efficiency. However, it is

deficient for extreme values such as the anomalous
precipitation levels observed in 2011 and 2014; as
shown in Fig.4, the difference between the predicted
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value and the observed value is still large. The possible
reason is that the number of candidate predictors is
insufficient to meet the requirement. In order to
improve the predictive ability for extreme values, the
precipitation time series of the certain period were
extracted using the mean generation function (MGF).
Each series of different periods from MGF were treated
as candidate predictors to enrich the number of factors.

The MGF (Wei et al.?¥) is based on the definition
of time series of the mean value generating function and
its extension matrix. A set of periodic functions are
constructed based on the original data sequence. Among
the periodic functions, those representing the intrinsic
period features of the precipitation are treated as
candidates and participate in the selection of the PSO
algorithm with other circulation predictors for PLS
modeling.

The periodic factor is constructed through a MGF
model (Wei?¥). The maximum period M = [N/3] ([ ]
relates to rounding, N is sample number) is selected.
From the previous modeling information, it can be
found that N = 54, thus M=18. Therefore, 18 extension
sequences of MGF are constructed. Their correlation
with the PreFS time series is shown in Fig.6. The
extension sequences of L = 14a (L represents period)
has the highest correlation to the PreFS (r = 0.655) with
significant level of a=0.01. The correlation coefficient
between the extended sequences of L = 7a and the
PreFS is 0.333, with significant level of «=0.05. The
wavelet analysis of PreFS time series shows that the
quasi periodic of 2a, 3-4a, and 5-7a on the interannual
scale, and 14a on the decadal scale (figure omitted).
Therefore, the extensions of L = 7a and L = 14a are
used as alternative periodic factors for the forecasting
model. This MGF improved PSO-PLS model is used to
fit and forecast within the training period of 1951—
2005 and the trial period of 2006—2014.
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Figure 6. The correlation between a group of series of
different periods produced by mean generated function (MGF)
and their original observed regional rainfall in flood season
over southwestern China.

PSO-PLS  regression prediction model was
improved through the addition of the MGF periodic
predictors. The comparison of the training and forecast
results of improved PSO-PLS forecasting model is
shown in Fig.7. Table 5 shows the inspection results of
prediction results of the improved PSO-PLS model. Fig.
6 shows that the difference between the training curve
and the measured curve is larger than that of the first
two models, indicating the poor training ability.
However, the difference between the predicted curves
and the observed curves of the precipitation anomalies
during the forecast period is smaller than that of the
prior two models. Modeling test results show that the
training ACC during 1951—2005 is 0.69 and the
forecast ACC is 0.44. Compared to the PSO-PLS
method, the training effect of the MGF improved
method is slightly worse but the prediction accuracy is
improved obviously.

== MGt improved P50-PLS  — Ubserved 1

Rainfallfmm

400
1952 1957 1962 1957 1972 1977 1982 1987 1992 1937 2002 2007 2012
Year

Figure 7. Same as Fig.4, but for the MGF improved PSO-PLS
regression method.

The improved PSO-PLS model was established for
the prediction of 36 stations separately. The 36 stations'
mean test ACC is 0.33 and the mean PS score (Table 6)
is 74.7, the highest score is 86.3 in 2012, and the lowest
is 63.2 in 2010. The forecast score of anomalous
precipitation in 2011 is 75, much higher than the other
two methods' PS score. Obviously, the addition of the
MGF extension sequences effectively improves the
accuracy of the PSO-PLS model on prediction of the
PreFs anomaly.

Table 5. Same as Table 2, but for MGF improved PSO-PLS
regression method.

Fitted value Forecast value
RMSE(mm) 35.46 62.53
MAE(mm) 27.24 48.77
ACC 0.69 0.44
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Table 6. PS score of three models of 36 stations precipitation test forecast results in Southwest China during flood season.

Year 2009 2010 2011 2012 2013 2014 Average Value
PLS 78.9 66 59.5 75 65.7 80.8 71.1
PSO-PLS 87.5 64 62.5 85 70.5 69 73.07
The MTF improved PSO-PLS 81.8 63.2 75.0 86.3 76.1 66 74.7

5.3 Comparison of spatial distribution of three models

In order to more intuitively compare the predicted
results of the three models of flood season precipitation,
Fig.8 shows the spatial anomaly rainfall percentage
distribution of the predicted results for three models in
2012 and the observations of the spatial anomaly
rainfall percentage distribution in 2012. As can be seen,
the spatial characteristics of the precipitation in the
southwest in 2012 mainly show greater precipitation in
southeastern area, with the north and south-central areas
showing less precipitation. The three models are
basically able to reflect this spatial distribution, but
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there are differences in the magnitude of the
precipitation. The forecast values of three models in the
northwest and midwest regions are all less than the
observations. The amounts of precipitation in the
northeast area that were forecasted using the PLS model
and PSO-PLS model are greater than the observed
precipitation. The results of the MGF improved
PSO-PLS model are closest to the observed values. As
given by the three models, the amounts of precipitation
in the southwestern area are greater than the observed
precipitation, with the results of the MGF improved
PSO-PLS model closest to the observed values.
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Figure 8. The spatial anomaly rainfall percentage distribution for three models and the observation of spatial anomaly rainfall
percentage distribution in Southwest China. (a) observation (b) PLS model (c) PSO-PLS model (d) MGF improved PSO-PLS

model.
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In summary, it can be assumed that among the
three models, the spatial distribution of the predicted
results of the MGF improved PSO-PLS model is closest
to the observed values. This validates the improved
effect of the MGF improved PSO-PLS model on the
predictive accuracy of precipitation in the PLS
regression model.

In addition, Fig.9 shows the spatial distribution of
the assessment scores of MAE, RMSE, ACC of the PLS
model and the MGF improved PSO-PLS model.
According to the comparison results, we can infer that
the predictive ability of the MGF improved PSO-PLS
model is generally stronger than that of the PLS model.
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6 STABILITY OF THE MODEL

The previous analysis shows that the MGF
improved PSO-PLS model is more effective in predicting
PreFS. Using the random cross validation (Tong 4
Xiong et al.?Y), the stability of the model is tested. 10%,
20%, and 30% samples are randomly selected from the
64 modeling samples of 36 stations, and the rest of
samples are taken as the test samples. The sensitivity of
the PSO algorithm to the predictor number of 13, 15, and
17 is also investigated. The average PS score of 36
stations from 20 times random cross validation of the
forecast model are shown in Table 7.
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Figure 9. The spatial distribution of the assessment scores of ACC, RMSE and MAE of the PLS model and the MGF improved
PSO-PLS model. (a) MAE (PLS) (b) MAE (the MGF improved PSO-PLS ) (¢) RMSE (PLS) (d) RMSE (the MGF improved

PSO-PLS) (¢) ACC (PLS) (f) ACC (the MGF improved PSO-PLS).

Table 7. Cross-verification of prediction skills for regional
rainfall of flood season over southwestern China through the
MGF improved PSO-PLS regression method.

model is compared. The periodic extension sequences
are constructed through MGF and the most correlative
ones are considered to enrich the predictors. In this
way, the problem of the low forecast accuracy of the

Alternati . e o
f::(?réve 13 15 17 model in anomalous precipitation year is improved. The
stability of the model is also analyzed. The following
10% test samples 73.34 72.52 74.05 conclusions are obtained:
20% test samples 71.62 70.84 71.90 (1) The model fitting results and forecast results of
30% test samples 70.84 71.50 70.76

Table 7 indicates that PS scores of the MGF
improved PSO-PLS model varies with the proportion of
random sampling and the number of initial particle
population. The results show that the PS score slowly
rises with an increase in the number of modeling
samples and a decrease in the number of the test
samples in general. Its variation range is always less
than 4%. Meanwhile, there is no significant effect of the
initial number of alternative predictors in the PSO
algorithm, which indicates that the PSO algorithm is
objective and stable. The abovementioned analysis
shows that the prediction performance of the model is
reliable and acceptable.

7 SUMMARY

For the forecasting of PreFS, a method is proposed
to automatically select the optimal factor combination
for the PLS regression model, namely, the PSO-PLS
regression method. Using the PSO-PLS regression
method, a forecast experiment for the 36-station and
whole region PreFSs is conducted. The difference
between the PSO-PLS regression model and the PLS

PreFS by the PSO-PLS regression method and PLS
regression method are compared. It is showed that the
fitting results of two methods are considerable. The
forecast results showed that PSO-PLS is superior to the
PLS method in terms of RMSE, MAE, ACC, and PS
score. The accuracy of the model prediction results of
the PLS regression method are significantly improved
with the PSO algorithm.

(2) Because the number of factors showing good
correlation with the PreFS is insufficient in the
PSO-PLS regression model, the precipitation sequences
extended by MGF are added as predictive factors to
improve the model. For the abnormal precipitation year
2011, the PS score of the improved model is 75, much
higher than that of the other two models. It is proved
that accuracy is effectively improved by using the
improved PSO-PLS model to predict the PreFS in
anomalous year.

(3) The stability of the PSO-PLS model is verified
by the random cross validation. It shows that with an
increase in the number of modeling samples, the PS
score slowly increases but the variation range of the PS
score is always less than 4% . The impact on the
prediction results is not significant when changing the
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initial number of alternative factors in the PSO
algorithm. This shows that the PSO algorithm is
objective and stable. The PSO-PLS precipitation
prediction model has good stability and forecast ability;
it has good application perspective.
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