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Abstract: The Microwave Temperature Sounder-Il (MWTS-II) and Microwave Humidity and Temperature Sounder
(MWHTS) onboard the Fengyun-3C (FY-3C) satellite can be used to detect atmospheric temperature profiles. The
MWTS-II has 13 temperature sounding channels around the 60 GHz oxygen absorption band and the MWHTS has 8
temperature sounding channels around the 118.75 GHz oxygen absorption line. The data quality of the observed
brightness temperatures can be evaluated using atmospheric temperature retrievals from the MWTS-II and MWHTS
observations. Here, the bias characteristics and corrections of the observed brightness temperatures are described. The
information contents of observations are calculated, and the retrieved atmospheric temperature profiles are compared
using a neural network (NN) retrieval algorithm and a one-dimensional variational inversion (1D-var) retrieval
algorithm. The retrieval results from the NN algorithm show that the accuracy of the MWTS-II retrieval is higher than
that of the MWHTS retrieval, which is consistent with the results of the radiometric information analysis. The retrieval
results from the 1D-var algorithm show that the accuracy of MWTS-II retrieval is similar to that of the MWHTS
retrieval at the levels from 850-1,000 hPa, is lower than that of the MWHTS retrieval at the levels from 650-850 hPa
and 125-300 hPa, and is higher than that of MWHTS at the other levels. A comparison of the retrieved atmospheric
temperature using these satellite observations provides a reference value for assessing the accuracy of atmospheric
temperature detection at the 60 GHz oxygen band and 118.75 GHz oxygen line. In addition, based on the comparison
of the retrieval results, an optimized combination method is proposed using a branch and bound algorithm for the NN
retrieval algorithm, which combines the observations from both the MWTS-II and MWHTS instruments to retrieve the
atmospheric temperature profiles. The results show that the optimal combination can further improve the accuracy of
MWTS-II retrieval and enhance the detection accuracy of atmospheric temperatures near the surface.
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1 INTRODUCTION

Atmospheric temperature profiles play an important
role in weather forecasting, climate monitoring, and the
analysis of the current weather conditions (Ahn et al.l";
Stahli et al.”). Accurate profiles of temperature may not
only be used to assess atmospheric stability and to assist
in the nowcasting of intense convective weather but also
to initialize and evaluate numerical weather prediction
models (Ebell et al.®!). Microwave remote sensing is an
important technique for obtaining atmospheric
temperature information. According to microwave
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spectral theory, microwave absorption and emission by
gas molecules in the atmosphere are primarily caused by
molecular rotational transitions (Smith™; Rosenkranz™).
Oxygen has a strong absorption band around 60 GHz
and an isolated absorption line near 118.75 GHz.
Hence, the 60 GHz and 118.75 GHz observations can
be used to retrieve atmospheric temperature profiles,
since the oxygen concentration in the atmosphere is
stable. Currently, the 60 GHz radiometer has reached
full development, such as the Microwave Sounding Unit
(MSU), the Advanced Microwave Sounding Unit
(AMSU)-A, and the Advanced Technology Microwave
Sounder (ATMS), with observations widely used in
operational applications in the atmosphere (Weng et al.,
Ferraro et al.”; Boukabara et al.®). Compared with the
60 GHz radiometer, the technology of the 118.75 GHz
radiometer has developed relatively slowly (Weinman™).
However, for atmospheric sounding, compared with the
60 GHz oxygen absorption band, there are several
advantages of the 118.75 GHz oxygen absorption line,
as follows. (1) The simpler superheterodyne radiometers
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may be used for sensing, since the 118.75 GHz
absorption line is isolated. (2) The oxygen absorption
line of 118.75 GHz is advantageous for retrieving
atmospheric temperature profiles at altitudes of 50-150
km since it has the simplest Zeeman splitting pattern of
all the oxygen absorption lines. (3) For an equivalent
antenna diameter, the spatial resolution at 118.75 GHz
is half that for 60 GHz. (4) The sensitivity to clouds and
precipitation at 118.75 GHz is typically better than that
at 60 GHz, and thus the information on clouds and rain
may be easier to obtain from observations near the
118.75 GHz absorption line (Gasiewski et al. "
Gasiewski et al.''; Gasiewski and Johnson[?). However,
because the 118.75 GHz absorption line is more
sensitive to clouds, this could in turn affect the retrieval
accuracy of atmospheric temperature (Guo et al.l"),

Comparisons of the retrieval of atmospheric
temperature profiles using the 60 GHz and 118 GHz
frequencies have been reported, including that by
Gasiewski et al ™ " who retrieved atmospheric
temperature profiles from airborne observations and
carried out sensitivity experiments for water vapor.
They concluded that most cloud and precipitation cells
are sufficiently transparent for temperature soundings at
118 GHz, although the 118 GHz observations are more
sensitive to fluctuations in water vapor density,
hydrometeor scattering, and absorption than 60 GHz
observations . Sahoo et al. calculated the information
content of the simulated brightness temperatures for 118
GHz and 60 GHz, and conducted retrieval experiments
of atmospheric temperatures using 118 GHz and 60
GHz simulations to find that the 60 GHz simulations
have a higher information content than those at 118
GHz with a higher retrieval accuracy. In addition, they
provided an optimized channel combination at 118 GHz
and 60 GHz for temperature retrieval ™. Gu et al.
retrieved atmospheric temperature profiles from 54 GHz
and 118 GHz simulated brightness temperatures using a
statistical retrieval method, with results showing that the
simulations of seven channels at 118 GHz can obtain
higher retrieval accuracy than those of four channels at
54 GHz ™. The existing literature on 118 GHz
observations contains little research comparing the
retrieval of atmospheric temperature profiles using 118
GHz and 60 GHz observations. However, the
Fengyun-3C (FY-3C) satellite carrying the Microwave
Temperature Sounder-II (MWTS-II) and Microwave
Humidity and Temperature Sounder (MWHTS) was
successfully launched on 23 September 2013, which
enables the possibility of assessing temperature
detection with the combined 118 GHz and 60 GHz
oxygen bands (Gu et al.!™),

The MWTS-II and MWHTS instruments, datasets
and data pre-processing procedure are discussed, with
the description of bias characteristics and results of the
bias correction of the MWTS-II and MWHTS observed
brightness temperatures described in section 2. Section

3 describes the retrieval algorithms, section 4 presents
an optimization method based on the branch and bound
algorithm, and calculates the radiometric information
contents of the MWTS-II and MWHTS observations.
Finally, the atmospheric temperature retrieval trials from
each sounder, and then that combined from both
sounders are presented in section 5, with conclusions
given in section 6.

2  DESCRIPTION OF THE MICROWAVE
HUMIDITY AND TEMPERATURE SOUNDER
AND THE MICROWAVE TEMPERATURE
SOUNDER-II

2.1 Instrument characteristics

The FY-3C satellite was successfully launched
into a near-polar, circular, morning-configured (1005
local time) orbit at an altitude of 836 km above the
Earth and an inclination angle of 98.75° to the
equator. The MWHTS and MWTS-II instruments are
part of the FY-3C satellite payloads, and are both
designed using the total power radiometers technique
(Gu et al.™; Bao !). The MWHTS instrument has
eight temperature sounding channels at the 118.75 GHz
oxygen absorption line, five humidity sounding channels
at the 183 GHz water vapor absorption line, and two
window channels at 89 GHz and 150 GHz. The
MWTS-II instrument has 13 channels in the 60 GHz
oxygen absorption band. Both sounders scan in a
cross-track manner within +53.35° with respect to the
nadir direction, and complete one scan every 2.66 s.
Each field of view (FOV) in the scan line corresponds
to one scan angle. The MWHTS has a nominal FOV of
16 km at the nadir, and each scan line has 98 fields of
view. The MWTS-II has a nominal FOV of 33 km at
the nadir, and each scan line has 90 fields of view. The
MWHTS and MWTS-II channel characteristics are
listed in Tables 1 and 2, respectively. Fig.1 shows the
weighting functions for the MWTS-II and MWHTS
channels, which are calculated from a 1976 standard US
atmospheric profile at nadir using the Millimeter-wave
Propagation Model (MPM)-93 (Liebe et al.l').

The weighting functions indicate the relative
contribution of each atmospheric layer to the observed
brightness temperature (Karbou et al.'™)). Fig. 1a shows
that MWHTS channels 2 -9 detect the atmospheric
temperature mainly in the stratosphere (from the surface
to 30 hPa), while channels 11-15 detect the humidity in
the troposphere. Fig. 1b shows that the MWTS-II
channels 3-13 profile the atmospheric temperature from
the surface to 3 hPa. In addition, the weighting
functions for MWHTS channel 1 and 10 and MWTS-II
channel 1 and 2 with frequencies near the atmospheric
absorption window have their maximum closer to the
surface. These channels are affected by the radiation
from both the Earth's surface and the atmosphere and
hence may be used to obtain surface information. The
height distributions of the peak weighting functions of
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the MWHTS and MWTS-II instruments are shown in

Tables 1 and 2, respectively.

Table 1. MWHTS channel characteristics.

Channel Frequency Sensitivity In-fight sensitivity Calibration accuracy Peak weighting function
(GHz) X) (X) (X) (hPa)
1 89.0 1.0 0.23 1.3 Window
2 118.75+0.08 3.6 1.62 2.0 30
3 118.75+0.2 2.0 0.75 2.0 50
4 118.75+0.3 1.6 0.59 2.0 100
5 118.75+0. 8 1.6 0.65 2.0 250
6 118.75«1.1 1.6 0.52 2.0 350
7 118.75+£2.5 1.6 0.49 2.0 Surface
8 118.75+3.0 1.0 0.27 2.0 Surface
9 118.75+5.0 1.0 0.27 2.0 Surface
10 150.0 1.0 0.34 1.3 Window
11 183.31«1.0 1.0 0.47 1.3 350
12 183.31£1.8 1.0 0.34 1.3 450
13 183.31+£3.0 1.0 0.30 1.3 550
14 183.31+4.5 1.0 0.22 1.3 750
15 183.31£7.0 1.0 0.27 1.3 850
Table 2. MWTS-II channel characteristics.
Channel Frequency Sensitivity In-fight sensitivity Calibration accuracy Peak weighting function
(GHz) (K) X) X) (hPa)
1 53.30 1.5 0.26 1.5 Window
2 51.760 0.9 0.20 1.5 Window
3 52.800 0.9 0.21 1.5 950
4 53.596 0.9 0.18 1.5 700
5 54.400 0.9 0.19 1.5 400
6 54.940 0.9 0.19 1.5 250
7 55.500 0.9 0.23 1.5 180
8 57.290(10) 0.9 0.74 1.5 90
9 fox0.217 1.5 0.66 1.5 50
10 £0£0.322+0.048 1.5 0.49 1.5 25
11 f0£0.322+0.022 2.3 0.53 1.5 10
12 f0£0.322+0.010 3.0 0.93 1.5 6
13 £0£0.322+0.005 45 2.11 1.5 3
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Figure 1. Weighting functions for the (a) MWHTS and (b) MWTS-II instruments.
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2.2 Data description and pre—processing

The datasets used here include the following. (1)
Level 1b MWTS-I and MWHTS brightness
temperatures from the National Satellite Meteorological
Center (NSMC) (http://www.nsmc.cma.gov.cn/). The
MWTS-I and MWHTS measurements are both
calibrated through a two-point calibration algorithm.
The Level 1b brightness temperatures are converted
from the instrument calibration data, including the
radiometric counts from cold space and a warm target,
the warm target temperature and instrument
temperature. These calibration data are converted to
brightness temperature using a non-linear correction,
with the coefficient derived from the prelaunch thermal
vacuum data, cross-polarization correction and
correction of antenna spill-over effects. (2) European
Centre for Medium Range Weather Forecasts (ECMWF)
ERA Interim reanalysis dataset obtained from the
ECMWF website (http://apps.ecmwf.int/datasets/), which
is a global assimilation system including many sounding
observations, such as radiosondes and in-situ sounders.
The profile data comprise temperature, humidity and
cloud liquid water on a total of 37 pressure levels
unevenly spaced from 1-1,000 hPa. The surface data
comprise surface pressure, skin temperature, 2 m
temperature, 2 m dewpoint temperature, and the 10 m
wind speed. The reanalysis dataset has a horizontal
resolution of 1° x 1° and a temporal resolution of 6 h
(i.e. with data available at 0000 UTC, 0600 UTC, 1200
UTC and 1800 UTC); (3) the National Centers for
Environmental Prediction (NCEP) Global Forecast
System (GFS) 6 h forecast dataset obtained from the
NCEP website (http://rad.ucar.edu/datasets/) is produced
by the Global Data Assimilation System (GDAS) and
the Global Spectral Model (GSM) forecast system at

NCEP. While the horizontal and temporal resolutions,
profile parameters and the surface parameters of the
NCEP forecast dataset are the same as that of the
ECMWEF reanalysis dataset, the profile data have a total
of 26 pressure levels unevenly spaced from 10-1,000
hPa. Therefore, to match the number of pressure levels
from the ECMWF reanalysis, the NCEP profiles are
interpolated. Our datasets cover a geographic area of
180°W-180°E and 0°-30°N from 1 February to 30 June
2014. Data pre-processing includes initially generating
collocated brightness temperatures, with the criteria for
collocating MWHTS observations with MWTS-II
observations that their time difference is less than 2 s
and the absolute distance between their positions
(latitude and longitude) is less than 0.1°. The criteria for
collocating  the  brightness  temperatures  with
climatological datasets (ECMWEF reanalysis and NCEP
forecast datasets) are that their time difference is less
than 0.5 h and the absolute distance between their
positions (latitude and longitude) is less than 0.5°. The
simulation and bias correction of  brightness
temperatures in the collocated dataset are then carried
out, with the brightness temperatures simulated by the
Radiative Transfer for TOVS (RTTOV) model (Hocking
et al. ™). The bias of brightness temperatures are
corrected by the neural network (NN) correction method
(He et al. ™). Finally, the collocated dataset from I
February to 31 May 2014 is taken as the statistical
analysis dataset with 17,396 collocated samples over
land and 150,609 collocated samples over the ocean.
The collocated dataset from 1 to 30 June 2014 is taken
as the testing dataset with 2,692 collocated samples over
land and 37,918 collocated samples over the ocean. The
overall data pre-processing procedures and parameters
are summarized in Fig.2 and Table 3, respectively.

MWHTS observed
brightness temperatures

MWTS-II observed
brightness temperatures

I

Climatological dataset

3
The collocated brightness
temperatures

-

Brightness temperatures
bias correction

— The collocated dataset ¥— RTTOV calculations

+

Statistical analysis dataset

¥
Testing dataset

Figure 2. The flow chart for the data pre-processing procedure.

2.3 Bias characteristics of observations

While residual biases vary with the scan positions,
where the observed brightness temperatures of the
MWTS-II and MWHTS instruments have been scanned
in a cross-track manner, the simulations from the

RTTOV model take the scan angle of the instruments
into account (Guo et al.™). We calculate the mean
biases between the observations and simulations in the
testing dataset, with the distributions of the mean biases
at different scan positions shown in Fig.3.
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Table 3. Brightness temperatures and atmospheric parameters in the collocated dataset.

Data source

Parameter

MWTSI/MWHTS

simulated brightness temperature
observed brightness temperature
corrected brightness temperature

temperature profile, humidity profile

cloud liquid water profile, surface pressure

skin temperature, 2-m temperature

2-m dewpoint temperature, 10-m wind speed

NCEP GFS 6 h forecast

temperature profile, humidity profile
cloud liquid water profile, surface pressure

skin temperature, 2-m temperature

2-m dewpoint temperature, 10-m wind speed

Figure 3 shows that the biases of observed
brightness temperatures from different channels of the
MWTS-II and MWHTS temperature soundings vary
greatly with scan angles, with significant differences
between channels as they are located in different
oxygen absorption bands, or in a different position of
the same oxygen absorption band. Compared with the
mean Dbiases of observations in the MWHTS
temperature sounding channels, the mean biases in the
MWTS-II channels are negative and larger. However,
the biases in the MWHTS temperature sounding
channels vary significantly at the adjacent scan
positions, though the bias values are small. In addition,
it is worth noting that there is a dip in the bias in the
first five scan positions for the MWHTS temperature
sounding channels, implying a contamination at the
initial scan positions. The actual sources of scanning
biases in the MWTS-II and MWHTS channels may be a
combination of some factors, such as solar
contamination on the calibration target, frequency drift,
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and the non-linear correction in the calibration method.
The root causes of these biases will be studied further.
As these biases may adversely affect the accurate
retrieval of the temperature, they should be corrected,
especially for the physical retrieval algorithm. The
observations of the testing dataset are corrected by the
NN correction algorithm, with the results also shown in
Fig.3. For the MWTS-II bias correction, Fig.3a shows
that the mean biases of the corrected brightness
temperatures approach zero. Except for the MWTS-II
channels 3 -6, the angle dependencies of the bias are
removed in the other channels. For the MWHTS bias
correction, Fig.3b shows that the biases and the angle
dependencies of the bias are smaller than that without
the bias correction. In addition, the dips in bias in the
first five scan positions have almost disappeared. To
quantitatively describe the bias correction results, the
root-mean-square errors (RMSE) of the observed
brightness temperature bias before and after correction
are shown in Fig.4.
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Figure 3. The mean biases and bias correction results of observed brightness temperatures. (a): MWTS-II; (b): MWHTS.
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Figure 4. RMSE of the bias before and after bias correction for the (a) MWTS-II and (b) MWHTS observations.

Figure 4 shows that, before the bias correction, the
RMSE of the bias for MWTS-II is significantly higher
than that in the MWHTS temperature sounding
channels, amounting to > 3 K, with the exception of the
MWTS-II channels 4, 6 and 12, with > 8 K in channel
1 in particular. For the MWHTS channels, the RMSE of
the bias in channel 2 is 3.8 K, and < 3 K in the other
channels. After the bias correction, the RMSE of the
bias in MWTS-II channels 1 and 2 and MWHTS
channel 9 are 2.8 K, 1.5 K and 1.7 K, respectively, but
the RMSE for the other channels is < 1 K. For the
MWTS-II channels 1 and 2 and MWHTS channel 9,
which are sensitive to surface disturbances, it is difficult
to distinguish whether the radiometric contribution is
from the surface or the atmosphere, implying a complex
relationship between the atmospheric temperature and
the bias of observations, which further degrades the
performance of the correction method. Based on the
above analysis, we find that, though the biases between
the observations and simulations from the MWTS-II and
MWHTS channels are large, they can be significantly
reduced using the NN correction algorithm.

3 RETRIEVAL ALGORITHMS

Statistical and physical retrieval methods are used
to retrieve the atmospheric temperature profiles. The
NN and ID-var algorithms are generally regarded as
statistical and physical methods, respectively, with both
able to represent the non-linear relationship between the
satellite observations and atmospheric temperature.

3.1 Neural networks retrieval algorithm

Neural networks have recently been applied in the
processing of remote sensing data, since they compute
analytical relationships between highly complicated
inputs and outputs. We focus on the backpropagation
learning algorithm because of its powerful non-linear
reflection ability and training functionality. Based on

previous work in the application of NNs for the
retrieval of atmospheric geophysical parameters, and
also considering the non-linear nature of temperature
retrieval, a three-layer backpropagation NN is selected,
with the schematic diagram containing one hidden layer
shown in Fig.5. The input layer, where no calculation is
carried out, has L nodes representing the length of the
input vector X, with each node in the input layer
connected to all M nodes in the hidden layer, which
perform the non-linear computation and are connected
to each node of the output layer. The output vector Z of
length N is generated by a weighted sum over the
output vector Y of the hidden layer. See Yao et al.??
and Polyakov et al. ™ for additional details on the
initialization, training, optimization and other advanced
topics of NNs.

Input Hidden Output

Layer Layer Y, Layer
Xi { X )— 2z
Xz Zz
XL ZN

Figure 5. Diagram of the three-layer backpropagation NN.

The corrected brightness temperatures in the
statistical analysis dataset are the input vector X, of
length [ corresponding to the 13 and 8 observational
channels for the MWTS-II and MWHTS instruments,
respectively. The atmospheric temperature profiles are
taken as the output vector Zy of length N equal to the
number of pressure levels of the profile data. The pairs
of input/output vectors are used to train the NN, and the
steepest descent method is selected for the training
phase. Testing reveals that the optimal number of
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hidden nodes in the hidden layer is 30 and 28 for the
MWTS-II and MWHTS observations, respectively.
Here, 90% of the pairs are used to determine the
weights and biases in the NN, with the remaining 10%
used to validate the training.
3.2 One-dimensional variational retrieval algorithm
3.2.1 ALGORITHM PRINCIPLE

The 1D-var retrieval algorithm is the typical
representative of physical retrieval methods containing
two main parts. One is the advanced radiative transfer
model for calculating radiances and the gradient of
radiance (or weighting function matrix), and the other is
a scheme for minimizing the cost function, which
weights the relative contributions of a priori information
and satellite measurements (Liu and Weng™"). Assuming
errors in both satellite measurements and a priori
information are neither biased nor correlated, and have
Gaussian distributions, the best estimate of minimizes
the cost function (Rodgers®™).

J=%(x—x”)TB’l(x—x")+;*[H(x)—I]TRfl[H(x)‘I] )

where x is the background profile, B is the background
covariance matrix, R is the observational error
covariance matrix, which includes the forward model
error and the instrument noise, H is the forward
operator that calculates the brightness temperature
simulations at the atmospheric state variable x, I is the
satellite observations, and T represents the matrix
transpose. The minimum of the cost function is found
from an iterative calculation of the descent direction at
the state x. The value of the cost function gradient at
each iteration is derived as

V .J = B (x-x")+H'(x)R '[H(x)-1] )
where H is the weighting function matrix. An optimal

solution to (2) is obtained by setting the gradient of the
cost function zero and is expressed as

X, = X"+BH"(x,)[H (x,)BH"(x,)+R]'[[-H(x,)—-H (x,)
(x'-x,)] 3)
where n is the iteration index, and the start point x, of

the iteration is the first guess.
3.2.2 ONE-DIMENSIONAL VARIATIONAL RETRIEVAL SYS-
TEM PARAMETERS

For the a priori information in the statistical
analysis, the temperature profiles of the ECMWF
reanalysis data are used to generate the background
covariance matrix B, which is calculated by the same
method as that of He et al.™. To avoid the different
effects on MWTS-II and MWHTS retrieval accuracy
resulting from the first guess, the NCEP 6-h forecast
temperature profiles are selected. In addition, the first
guess is also taken as the background profile in our
study.

For the bias H(x)-I, the NN correction algorithm is
used. The NN structure, input vector and learning
algorithm in the training phase are the same as that of
the NN retrieval algorithm in section 3.1, but the output

vector is replaced by the biases between observations
and simulations. Based on many training tests, we find
that the optimal numbers of hidden nodes in the hidden
layer are 50 and 48 for the MWTS-II and MWHTS
observations, respectively.

After  correcting the  observed  brightness
temperatures, the biases between the simulations and the
corrected observations, as well as the sensitivities
measured in flight (see Tables 1 and 2 for the MWHTS
and MWTS-II instruments, respectively) are used to
calculate the observational error covariance matrix R.
Both the observational error covariance matrix R as
well as the quality control of observations, and the
convergence criterion, are calculated using the same
method as that of He et al.”".

Based on the above analysis, the MWTS-II and
MWHTS 1D-var retrieval systems are built to retrieve
the atmospheric temperature profiles.

4 OPTIMIZATION OF THE CHANNEL
COMBINATION

4.1 Radiometric information content calculation

In theory, the more information contained in the
observations, the higher the retrieval accuracy obtained.
The number of degrees of freedom DOF is selected as
the quantitative index used to evaluate the radiometric
information contents of observations, and is computed
as the trace tr(+) of the averaging kernel matrix, DOF=tr
(A) (Sahoo et al."l), where

A=BH'(HBH'+R)"'H 4)
and H is the weighting function matrix, B and R are the
background covariance matrix and observation error
covariance matrix, respectively.

We focus on the channel combination, including
the 13 channels of the MWTS-II observations and 8
temperature  sounding channels of the MWHTS
observations. However, according to the temperature
weighting-function analysis, we find some channels in
the channel combination have similar sensitivities to a
certain atmospheric layer, such as the MWTS-II channel
6 and MWHTS channel 5, which means there is some
redundant information in the channel combination.
4.2 Optimization algorithm for the channel combination

In general, to identify and remove the redundant
elements of a large set, feature selection (i.e. variable
selection) must be performed, requiring the selection of
a subset of relevant variables from a larger set (Guyon
and Elisseeff ®; Ludwig and Nunes ™). Here, the
variables are the channels, and are sorted with a branch
and bound algorithm (Narendra and Fukunage”).

Figure 6 shows the solution tree based on a branch
and bound feature selection algorithm. The set K,
contains both redundant and relevant features, i.e., k,,
k,, ---k,, where m is the number of elements of the set.
To select a subset of n elements, K, which are those n
elements with the most relevant features within K,, the
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selection criterion ¢ is required. Any subset should have
a value of ¢ that is no larger than that of any proper
superset when ¢ is monotonic. However, removing a
particular feature from a large set may not have a
serious impact on the criterion values. Therefore, each
feature in the m-feature set K,, is excluded (one at a
time), and the criterion value of ¢ is calculated for each
of the subsets at level 1 in Fig.6. The subset having the
maximum value of ¢ (K, _) is selected, and then all
other subsets are abandoned. All subsets of K,,_, at level
2 have a value of ¢ which is not larger than that of K,,_;.
The subset of K,_;, which has the maximum value of &
(K,,-,), is selected, and the others are abandoned. This
process of selecting the subset with the maximum value
of &, and then abandoning all others is repeated until the
desired number of variables is attained.

level 1

level 2

level 3

4 565665666 5 6 6 6 6

Figure 6. Solution tree based on a branch and bound feature
selection algorithm.

Here, the channel combination described in section
4.2 is taken as the set K,, where the features are the
weighting functions corresponding to the different
channels, and the value of m is 21. The DOF for the
channel combination is taken as the selection criterion.
The optimized combination generated by the branch and
bound algorithm is K,. Considering that the peak
weighting-function heights of MWTS-II are distributed
throughout the entire atmosphere, the desired number of
features n is equal to that of the MWTS-II channels.
Therefore, over both land and ocean, we obtain the
optimized combinations containing the MWTS-II
channels 3-13 and the MWHTS channels 8 and 9.
4.3 Radiometric information content analysts

The DOF of the measurements from MWTS-II
channels 1-13 and MWHTS channels 2-9, the channel
combination and the optimized combination is
calculated. The parameters required for the averaging
kernel in (4), i.e., the weighting function matrix H, the
background covariance matrix B and the observation
error covariance matrix R are calculated by the same
method as that in (3). The mean temperature profile in
the statistical analysis is used to calculate the weighting
functions, since its calculation is greatly affected by the
atmospheric conditions. Table 4 lists the DOF of the

observations over land and ocean.

Table 4. The DOF over land and ocean for different channel
combinations.

DOF
Channel
over land Over ocean
MWHTS 3.8601 4.0039
MWTS-II 6.2943 6.5315
MWTS-II+ MWHTS 6.6373 7.0305
Channel optimization 6.5308 6.8681

Table 4 shows that the DOF for the MWTS-II
observations is higher than that of the MWHTS
observations, possibly because their temperature
sounding channels are located in different oxygen
absorption bands, and the number of channels is
different. The DOF for the observations over ocean is
higher than that over land, probably because the
simulated accuracy of the ocean-surface emissivity is
always higher than that of land. The DOF of the
channel combination is highest, however, since
redundant information exists in the observations from
the channel combination. Actually, the optimized
combination is the improved MWTS-II channels in
which channels 1 and 2 are replaced by MWHTS
channels 8 and 9. The DOF of the optimized
combination is higher than that of the MWTS-II
channels alone. In theory, the more information
contained in the observation, the higher the retrieval
accuracy obtained. Therefore, for the retrieval of
atmospheric temperature, from a theoretical point of
view, we speculate that the retrieval accuracy of
MWTS-II is higher than that of MWHTS, the retrieval
accuracy of the optimized combination is higher than
that of MWTS-II, with the channel combination having
the highest retrieval accuracy.

5 COMPARISON OF RETRIEVAL RESULTS

The inversion of observations into atmospheric
temperature profiles, including the corrected brightness
temperatures obtained from the MWTS-II and MWHTS
data in the testing dataset, is conducted using the NN
and 1D-var algorithms. The bias and RMSE quantify
the validation of the retrieval results based on ECMWF
reanalysis data, which is used as the truth. According to
the weighting-function analysis of the MWTS-II and
MWHTS observations, we validate the temperature
retrievals at pressure levels from 10-1,000 hPa.

5.1 Retrieval results of the neural network algorithm

The corrected brightness temperatures of the
MWTS-II and MWHTS observations are calculated
individually as inputs of the NN retrieval algorithm,
with outputs being the temperature retrievals shown in
Fig.7.
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Figure 7. Comparison of temperature retrievals using the NN algorithm over (a) land and (b) the ocean.

Over land, Fig.7a shows that the bias for the
MWTS-II retrieval is smaller than that of the MWHTS
retrieval, except for the pressure levels around 100 hPa
and 800 hPa. The accuracy for the MWTS-II retrieval is
similar to that of the MWHTS retrieval at levels from
775-1,000 hPa and 500-550 hPa, while the other levels
of the MWTS-II accuracy exceeds that of the MWHTS
observations. Over the ocean, Fig.7b shows that the bias
and RMSE of the MWTS-II retrieval are both smaller
than that of the MWHTS retrieval at levels from 10—
950 hPa, and compared with the retrievals over land,
have a higher accuracy. Besides the different samples
over land and ocean in the statistical analysis dataset,
which can affect the trained results of the NN, the main
cause of the different accuracies over land and ocean is
possibly related to the surface emissivity, where the
calculation of the land-surface emissivity is complicated,
and the accuracy is always lower than that of the
ocean-surface emissivity. In addition, the land surface
has higher emissivity, making it difficult to distinguish
the radiation from the surface and that from the
atmosphere close to the surface, which is true for both
the MWTS-II and MWHTS observations. According to
the comparison of the retrieval results over land and
ocean, we find that the MWHTS retrieval has a superior
detection ability of temperature at the levels from 950-
1,000 hPa, which opens up the possibility of improving
the MWTS-II retrieval accuracy of temperature profiles
in the atmospheric surface layer using the MWHTS
observations. Based on the comparison of the retrieval
results using the NN algorithm, it can be seen that the
MWTS-II retrievals attain a higher accuracy than that of
the MWHTS retrievals, which is consistent with the
conclusion from the information content analysis in
section 4.3.

5.2 Retrieval results of the one —dimensional variational
algorithm

The ID-var retrieval system is applied to the

MWTS- I and MWHTS corrected brightness
temperatures to estimate the atmospheric temperature
profiles. In our retrieval system, the number of iterative
times is generally less than five. Quality control of the
MWTS-II retrieval results in a convergence of more
than 95.4% and 96.1% of the solutions over the land
and ocean, respectively. For the MWTS-II retrievals,
more than 95.4% and 96.2% of solutions converge over
land and ocean, respectively. The retrieval validation
results are shown in Fig. 8.

Over land, Fig. 8a shows that the bias of the
MWTS-II retrieval exceeds that of MWHTS retrieval,
except at the levels from 10-100 hPa and 900-1,000
hPa. The accuracy of the MWHTS retrieval is higher
than that of the MWTS-II retrieval at the levels from
500-1,000 hPa and 175-300 hPa, and is lower than that
of MWTS-II retrieval at the levels from 300-450 hPa.
The MWHTS retrievals are nearly equivalent to that of
MWTS-II at the other levels. Over the ocean, Fig. 8b
shows a larger bias of the MWTS-II retrieval than that
of MWHTS retrieval at almost all pressure levels. The
accuracy of the MWHTS retrieval is similar to that of
the MWTS-II retrieval at the levels from 850 —1,000
hPa, is higher than that of MWTS-II retrieval at the
levels from 650-850 hPa and 125-300 hPa, and lower
than that of the MWTS-II retrieval at the other levels.
As for the results of the NN algorithm, the retrieval
accuracy over the ocean is higher than that over the
land. Retrieval results using the 1D-var algorithm are
not consistent with the conclusion from the information
content analysis in section 4.3, with the reason being
that the physical retrieval method is affected by many
factors, such as the background profiles, the background
covariance matrix, the observation error covariance
matrix, and the bias correction results.



160 Journal of Tropical Meteorology Vol.24

o
o

100 MWTS-II 00 MWTS-Il ||
—%— MWHTS —%— MWHTS

200 200
300} 300

400+ 400t

o o

< <

500 8 500

3 173

8 8

600} & 600

=
o
=]
~
8

o]
Q
o
o]
8

900 | 1 900}
(a)
1000 . - 1000 L+ . o

2 -1 0 1 2 3
Bias(K) RMSE(K)

=)

0 0

100 { 100

200+ { 200

300 { 300t

MWTS-I

400} 400} —%— MWHTS |
T g
2500 £500
" (2]
8 8
a 600 F 600+

700 700

MWTS-II
+

800 MWHTS || g}

900 (b) R 900 +
1000 o 1000 i :

2 0 2 0.5 1 15 2 25

Bias(K) RMSE(K)

Figure 8. Results of temperature retrievals using the 1D-var algorithm over (a) land and (b) ocean.

Based on the above comparison of retrieval results
using the NN and 1D-var retrieval algorithms, we elect
to use the NN algorithm, whose retrieval results are
consistent with the information content analysis, to
validate the retrieval performance of the channel
combinations, as well as the optimal channel
combination.

5.3 Retrieval results of the channel combination

The corrected brightness temperatures of the
channel and optimal combinations are considered
individually as the input vector of the NN retrieval
algorithm, which is again trained to retrieve the
atmospheric profiles using the corresponding corrected
brightness temperatures. Fig.9 shows the retrieval
validation results.
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Figure 9. Results of retrievals using a channel combination and optimization over (a) land and (b) the ocean.

Over land, Fig.9a shows that the retrieval bias and
RMSE of the channel combination are smaller than that
of the optimized combination at the levels from 900 -
1,000 hPa and 350 -700 hPa, with the retrieval
accuracies similar at the other levels. Over the ocean,
Fig.9b shows that the retrieval results of the channel
combination are superior to that of the optimized

combination at all pressure levels. Comparing these
results with those from the MWTS-II and MWHTS
retrievals individually, i.e., comparing Figs.9 with 7, we
find improved results within the atmospheric surface
layer with use of the optimal combination, which
validates the presumption presented in section 5.1, but
with similar retrieval accuracies at the other pressure
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levels. In addition, the channel combination attains the
highest retrieval accuracy, with the accuracy of the
MWHTS retrieval being the worst of the four retrievals.
The comparison of retrieval results using the NN
algorithm proves the wvalidity of the theoretical
deduction of the radiometric information content
analysis.

6 CONCLUSIONS

To evaluate the detection ability of the atmospheric
temperature of the 60 GHz oxygen absorption band and
the 118.75 GHz oxygen absorption line, we focus on
the observed brightness temperatures collected by the
MWTS-II and MWHTS instruments. The radiometric
information contents of the MWTS-II channels 1-13
and the MWHTS temperature sounding channels 2 -9
are calculated, and the atmospheric temperature profiles
are retrieved using NN and 1D-var algorithms. Results
with the NN algorithm show a higher accuracy of
MWTS-II retrievals than that of the MWHTS retrievals,
which agrees with results from the analysis of the
radiometric information content. However, the results
using the 1D-var algorithm show that MWTS-II and
MWHTS retrievals have different strengths in certain
atmospheric layers. For the NN algorithm, based on the
comparison of the results of the MWTS-II and MWHTS
retrievals, an optimal combination, including MWTS-II
channels 3-13 and MWHTS channels 8-9, is suggested
to improve the retrieval of atmospheric temperature
profiles and the reproduction of atmospheric
temperature near the surface layer.

The MWTS and MWHTS observed brightness
temperatures, which are based on the 60 GHz and
118.75 GHz oxygen absorption band and line,
respectively, are used to carry out the retrieval of
atmospheric temperature profiles. However, compared
with the MWHTS temperature sounding channels
located in the 118.75 GHz oxygen absorption line, the
number of MWTS-II channels located in the 60 GHz
oxygen absorption band is different. In addition, the
distributions of the peak weighting-function height and
the weighting-function shape of the MWHTS and
MWTS-II observations are also very different. These
factors affect the evaluation of the 60 GHz and 118.75
GHz observations. Therefore, for the MWTS-II and
MWHTS temperature sounding channels, selecting the
similar weighting-function distributions and the same
number of channels to further evaluate the detection
ability of atmospheric temperature is the topic of future
work.
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