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Abstract: The classification of tropical cyclones (TCs) is significant to obtaining their temporal and spatial variation
characteristics in the context of dramatic-changing global climate. A new TCs clustering method by using K-means
clustering algorithm with nine physical indexes is proposed in the paper. Each TC is quantified into an 11-dimensional
vector concerning trajectory attributes, time attributes and power attributes. Two recurving clusters (cluster A and E)
and three straight-moving clusters (cluster B, C and D) are categorized from the TC best-track dataset of the western
North Pacific (WNP) over the period of 1949-2013, and TCs' properties have been analyzed and compared in different
aspects. The calculation results of coefficient variation (CV) and Nash-Sutcliffe efficiency (NSE) reveal a high level of
intra-cluster cohesiveness and inter-cluster divergence, which means that the physical index system could serve as a
feasible method of TCs classification. The clusters are then analyzed in terms of trajectory, lifespan, seasonality, trend,
intensity and Power Dissipation Index (PDI). The five classified clusters show distinct features in TCs' temporal and
spatial development discipline. Moreover, each cluster has its individual motion pattern, variation trend, influence region
and impact degree.

Key words: tropical cyclone; physical index; K-means clustering; Nash-Sutcliffe efficiency; inter-cluster divergence;

intra-cluster cohesiveness; power dissipation index
CLC number: P444 Document code: A
doi: 10.16555/.1006-8775.2018.02.003

1 INTRODUCTION

Tropical cyclone (TC) is a kind of devastating
meteorological disaster and induces countless casualties
and economic losses. Western North Pacific (WNP),
where TCs occur actively, suffers more than 30 TCs
every year on average, accounting for nearly one third of
the gross TCs on the globe (Wang et al.™). In China,
practically half of the natural disaster losses are caused
by TCs (Xiao and Xiao ¥), resulting in an annual
economic loss of about 200 billion RMB (Zhang et al.™).
In the context of dramatic-changing global climate
initiated by human activities and natural factors
(Dessai ™), the influence of TCs becomes more and
more serious (Wu et al.”)). In the perspective of disaster
system theory, TCs, as the hazard factor of TCs
disasters, have much uncertainty and complexity. The
analysis of the cybotaxis of hazard factor and its space,
time and power principles would provide a scientific
basis for the prevention and evaluation of TCs disasters.
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Clustering TCs into several patterns is significant
to comprehending their characteristics of temporal and
spatial variation. In previous studies, TCs were
classified into different clusters according to large-scale
synoptic pattern or subjective analysis. Lander
discriminated the TC trajectories into four categories
(straight moving, recurving, north oriented and South
China Sea) based on the large-scale pattern of the WNP
monsoonal flow. Horvath et al.™” classified the TCs of
Apennine and Adriatic area into four main types by
subjective  analysis  technique: Genoa, Adriatic,
simultaneous Genoa and Adriatic, as well as non-Genoa
and non-Adriatic. Hodanish and Gray ©® divided the
WNP TC trajectories into four clusters (sharply
recurving, slowly recurving, left turning, and
non-recurving) by means of the large-scale synoptic
pattern, which interacted with the TCs’ environment
prior to and during the recurvature.

In the case of TC trajectories, objective analysis
methods based on mathematical theory and data-mining
algorithm have become prevalent in recent decades. The
finite mixture model was applied to the classification of
TC trajectories according to the trajectory shape and
location. Camargo et al. ™ identified three
straight-moving trajectory clusters and four recurving
clusters from the WNP TC trajectories from 1950 to
2002 with this method. The fuzzy c-means clustering
method was suggested to be a useful approach to
probabilistic-type clustering of multitudinous TC tracks
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(Kim et al.™). In order to overcome the shortcomings
of the finite mixture model that the model requires
identical trajectories lengths, Kim et al.'” interjected a
TC track into 20 segments artificially, and divided the
WNP TC trajectories into seven different clusters. The
tree construction algorithm C4.5 has been employed to
analyze TC tracks as well. Zhang et al.'! focused on the
rules of TCs recurvature, and the parameters affecting
TCs recurvature were categorized into three groups:
large-scale circulation, circulations surrounding TCs and
straight-moving TCs, and they applied the method to the
classification of TCs tracks of the WNP and the South
China Sea (SCS).

K-means method, as a common data-mining
method, has been proposed to explore the TCs in the
WNP (Elsner and Liu™; Nakamure et al.¥; Yu et al.l'l),
Atlantic  (Elsner ™) and other basins (Lin et al.!').
Elsner and Liu "™ pointed out that K-means method
could be applied to the classification of TCs based on
the location with maximum intensity and dissipation.
However, this method was not applicable to the cases
that TCs had different trajectories lengths (Camargo et
al.”)). In order to overcome this deficiency, Nakamure et
al.!¥ suggested that TC trajectories could be clustered
by using K-means algorithm with mass moments of
centroid and variance. This method was well applied to
analyze the north Atlantic TCs. Furthermore, Yu et al.'
modified Nakamure’s method by adjusting the weight
factors to emphasize the significance of TCs trajectory
direction, length and shape in clustering process. The
WNP TC trajectories were separated into seven groups
by the method. Whereas, Lin et al.' recommended that
TC trajectories could be decomposed into three
coefficients of different orders: genesis location,
trajectory direction and curvature. In addition, they
clustered the TC trajectories over the Bay of Bengal
into westward-moving type, northward-moving type and
northwestward-moving type by K-means algorithm with
those coefficients.

Commonly the TC trajectory determines the
landing risk and the influence scope. Most scholars so
far have paid much attention to it. Whereas, the TC
time and power attributes are of great significance to
the TC disasters and should not be neglected. TCs, with
different occurrence time, intensity and influence time
will vary in their impact degrees. Thus, aiming to
analyze the TCs’ cybotaxis and obtain the multiple
characteristics of TC trajectory, time and power
attributes, a new method using K-means clustering
algorithm with physical indexes is proposed for TCs
classification in this paper. A series of physical indexes,
including genesis location, dissipation location,
trajectory length, mean deflection angle, lifespan,
seasonality, intensity and Power Dissipation Index (PDI)
(Emanuel!™), are suggested to describe TCs’ space-time
and power discipline. The TCs information is converted
into 11-dimensional vectors applied to K-means

clustering algorithm, whose contents emphasize not only
trajectory attributes but also power attributes and time
attributes. Moreover, in the purpose of evaluating the
result of TC classification, the coefficient variation (CV)
values and Nash-Sutcliffe efficiency (NSE) (Nash and
Sutcliffe U*) are applied for contrastive analysis of
degree of inter-cluster divergence and intra-cluster
cohesiveness.

In what follows, the best-track dataset resource and
the clustering methodology applied in the classification
of the WNP TCs are interpreted in section 2. In section
3, the degree of inter-cluster divergence and
intra-cluster cohesiveness are calculated with the CV
and NSE. The comparison and analysis of TCs’
attributes in terms of space-time variation characteristics
such as trajectory, lifespan, intensity and PDI are
discussed in section 4. Conclusions follow in section 5.

2 DATA AND METHOD

2.1 Data

The TCs studied in this investigation over the
rectangle zone (0°-55°N, 100°E-180°) cover the WNP
and the SCS region. The TC best-track datasets for the
WNP are usually issued by the China Meteorological
Administration (CMA), the Joint Typhoon Warning
Center (JTWC), the Regional Specialized
Meteorological Center (RSMC), and the Hong Kong
Observatory (HKO). Amongst the four agencies, CMA
provides the relatively accurate and complete datasets
over the offshore and mainland of China (Ying et al.'").
Consequently, the best-track dataset obtained from
CMA over the period of 1949—2013 is used for
analysis, including TC ID, data and time, category,
longitude and latitude coordinates, maximum sustained
wind (MSW) obtained from 2-min mean and minimum
sea level pressure (MSLP).

The TC sub-center, a circulation center with warm
core, usually splits from its parent TC when
encountering topography (such as mountain and island)
or other synoptic systems, and its information has also
been recorded in the best-track dataset of CMA (Bao et
al.™; Ying et al.'). As the sub-centers’ information is
meaningless for the classification of TCs, this part of
data is deleted from the whole WNP dataset. In total,
2079 TC samples are ultimately used here, whose
strength have reached the level of tropical depressions
(TD) and whose lifespan have lasted for 24 hours and
even longer.

2.2 Quantification of TCs

The genesis of a TC is defined when its strength
has reached the level of TD for the first time. The
dissipation of a TC is defined when the strength is
under the TD level constantly. Allowing for the
trajectory, time and power, nine physical indexes are
suggested to describe a TC, which comprise of genesis
location (latitude and longitude coordinates), dissipation
location (latitude and longitude coordinates), trajectory
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length, trajectory direction, mean deflection angle,
lifespan, seasonality, intensity and PDI. The definition
of these physical indexes is presented in Table 1. These
indexes could comprehensively describe the traits of
TCs. Therefore, in order to obtain their cybotaxis and
space-time principles objectively, the nine indexes need

to be introduced and analyzed as crucial factors. To
quantify the TC applied to the clustering analysis, the
z-score normalization method is used to convert the
overall information into a standardized 11-dimensional
vector. Furthermore, all the indexes are given an even
weight to avoid the subjective deviation.

Table 1. Physical indexes.

Attributes Physical indexes

Circumscription

(1) Genesis location
(2) Dissipation location
(3) Trajectory length

The latitude and longitude coordinates of TC genesis location
The latitude and longitude coordinates of TC dissipation location
The trajectory length between genesis and dissipation locations.

Trajectory attributes Unit: km

(4) Trajectory direction

The angle between the equator and the line that connects the

genesis and dissipation locations. Unit: ©

(5) Mean deflection angle

The average of the deflection angle of each point on the TC

trajectory with respect to the previous point. Unit: °

(1) Lifespan
(2) Seasonality
(1) Intensity

Time attributes

Power attributes

The length of time for which a TC exists. Unit: d
The month of the TC genesis, indicated by 1 to 12
The maximum wind speed that appears in lifespan. Unit: ms™

n

(2) PDI PDI= JO v’ds. Unit: m’s™ where n is the lifespan of a TC and v is

the wind speed

2.3 K-means clustering algorithm

K-means clustering algorithm is widely utilized in
TC data mining due to its simplicity, maturity and
stabilization. Within the algorithm, the distance between
the two TC samples is determined by the Euclidean
distance, and “silhouette” (S values serve as the
indicator to determine the optimal cluster number
(Nakamura et al.'¥). The definition of S; is

min(h,)—a (1)
max[a;, min(b;)]

where ¢; is the mean distance between the TC sample i
and the other intra-cluster samples, and b, is the mean
distance from the TC sample i to the other inter-cluster
samples. S; values range from -1 to 1. A TC sample
with a high S; value indicates that it is cohesive to the
other samples within the cluster. A negative S; value
indicates that the TC sample is possibly misclassified.

Figure 1 shows the mean S; value and the number
of negative S; values for variable cluster number K
ranging from 3 to 10. For the total TC samples, the
number K corresponding to a high mean S, value and
less negative S;, maybe a good choice of optimal cluster
number when the algorithm converges. From Fig.1, it is
obvious that mean S; reaches its peak (0.335) and the
number of negative S; values bottoms simultaneously
(95) when K=5. It indicates that the optimal cluster
number is 5. In order to facilitate the distinction, the
calculated five clusters are labeled with A, B, C, D and
E. The quantity of TCs and the mean values of the nine
physical indexes for each cluster and all TCs are shown
in Table 2, from which it is easy to recognize the
separation among different clusters clearly.
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Figure 1. Mean silhouette and number of negative silhouette
values.

3 DEGREE OF INTER -CLUSTER DIVER-
GENCE AND INTRA -CLUSTER COHESIVE-
NESS

For the sake of the evaluation of the clustering
method, the inter-cluster divergence and intra-cluster
cohesiveness are introduced in this study. The degree of
inter-cluster divergence is a measure of how well the
clusters are separated, and the degree of intra-cluster
cohesiveness is a measure of how cohesive each cluster
is. The satisfactory classification should be with high
degrees of inter-cluster divergence and intra-cluster
cohesiveness. In this section, the CV and NSE are
employed as indicators to assess the five clusters’
divergence and cohesiveness. Simultaneously the
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clusters classified by mass moments (CCMM) using
K-means clustering method (Nakamura et al.") are cited
as a comparison here. The detailed result of the CCMM
calculated by the modified method of Yu et al. ™
with an even weight coefficient 0.2 is exhibited in
Table 3.

The quantity, mean centroid location and variance
values of the CCMM are presented (see Table 3).
According to Nakamura et al. ! the TC trajectory,
which is considered as a spatial open curve with the

information of wind speed, can be defined by two mass
moments. The first mass moment is the centroid
location of a TC trajectory, i.e. the latitude and
longitude coordinates (x, y). The second mass moment
contains three directional variances (V,, V, and V). The
optimal cluster number K for the CCMM is determined
by S; values as well, and K=5. The five clusters are
tagged with I, I, III, IV and V to distinguish from
the clusters classified by physical indexes (CCPI).

Table 2. Quantity and mean values of physical indexes for each cluster and for all TCs.

Genesis Dissipation

Cluster Quantity

Lat (°N) Lon(°E) Lat (°N) Lon(°E)

Seasonality length  direction deflection

Trajectory Traject M . .
rajectory “ rajectory can Lifespan Intensity PDI

(d) (ms™) (x10"’m’s?)

(km) (°)  angle ()

590 18.76  143.17 3743 150.80 7.87
222 16.26  123.69 19.89 119.45 8.36
337 11.04 142.90 20.98 116.05 8.61
597 14.08 127.66 18.56 117.25 7.75
333 11.63 15098 39.23  151.59 8.51
All 2079 1475 137.84 27.76 13231 7.87

mgQw >

3381.56  104.83 14.29 598  32.50 1.09
1282.91 46.65 32.18 375  21.57 0.29
3818.50 24.24 13.28 8.74  49.09 3.64
1541.11 27.43 12.65 3.61 2417 0.35
5609.08 90.27 12.75 1022 6l1.11 7.51
3056.58 61.00 15.32 6.19  36.21 2.23

Table 3. Mean centroid and variance values for the CCMM and for all TCs.

Cluster Quantity Centroid x (°E) Centroid y (°N) Variance x Variance y Variance xy
I 349 151.34 27.92 52.10 56.69 27.78
II 255 143.57 14.29 21.01 16.49 -3.34
il 219 133.88 16.40 131.96 26.72 -38.89
Y 756 117.58 16.59 21.84 5.12 -5.20
\Y 500 133.40 24.92 28.38 40.92 -1.94
All 2079 131.96 20.19 39.99 26.06 -2.20

3.1 Degree of inter—cluster divergence
CV, defined as the ratio of standard deviation to

the mean, is usually used to characterize the dispersion
of frequency distribution. To estimate the degree of
inter-cluster divergence, the CV values of mean
lifespan, trajectory length, intensity and PDI for the
CCPI and CCMM are listed in Table 4. A high CV
value always indicates that the calculated clusters are
highly dispersive mutually.

In terms of lifespan, there is an apparent
dissimilarity of the mean values between the CCPI and

the CCMM. The mean values of CCPI’s lifespan fall
into the range of 3.61 d to 10.22 d, which is wider than
the lifespan of CCMM ranging from 4.66 d to 9.81 d.
What’s more, the distinctive CV values indicate that,
the mean lifespan of CCPI (CV=0.41) is more
dispersive than that of CCMM (CV=0.27). By
examining the data in Table 4, an approximate pattern
occurs in trajectory length, intensity and PDI as well.
That is to say, the CCPI has a higher degree of
inter-cluster divergence than CCMM.

Table 4. CV values of mean lifespan, trajectory length, intensity and PDI for the CCPI and CCMM.

Physical index Method ~ Cluster A/ I Cluster B/II  Cluster C/IIl  Cluster D/IV  Cluster E/V CVv
Lifospan @) CCPI 5.98 3.75 8.74 3.61 10.22 0.41
P CCMM 6.90 521 9.81 4.66 6.92 027
Trajectory length (kmy P! 3381.56 1282.91 3818.50 1541.11 5609.08 051
jectory feng CCMM 4181.99 2468.82 5050.86 1839.38 3537.71 0.34
Intensity (ms”) CCPI 32.50 2157 49.09 24.17 61.11 0.40
Y CCMM 38.77 3220 56.82 28.20 39.57 0.25
CCPI 1.09 0.29 3.64 0.35 751 1.07

10 302
PDI (<107 m’s™) CCMM 2.42 1.79 651 0.81 2.62 0.69
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3.2 Intra—cluster cohesiveness

In order to determine the intra-cluster cohesiveness
of the CCPI, the NSE is adopted here. The NSE is a
normalized index of relative magnitude of the simulated
numerical data compared with observed field data in
hydrological models (Nash and Sutcliffe "), which is
calculated as follows:

NSE=1— V2 Vo~ V) )

2

\/2:1 (CVM[ _CVMnean)
where n is the number of clusters, CV; is the CV value
of TC samples within the ith cluster that is classified by
mass moments, CV ... 1S the mean CV,, CVy is the
CV value of TC samples within the ith cluster that is
classified by physical indexes. NSE values range from
-oo to 1. For instance, the NSE value of 1 corresponds

to an excellent similarity between CV, and CV,.
Contrarily, the value of NSE less than 0.5 means that
the CV, is quite different from CV,, in general (Moriasi
et al.?). The NSE values for lifespan, trajectory length,
intensity and PDI are calculated and listed in Table 5.

For the lifespan, the NSE is 0.21, the mean CV, is
smaller than CV,, and the result means that the CV
value of TC samples in CCPI is generally smaller than
that in CCMM. That is, TCs in CCPI generally have a
higher degree of intra-cluster cohesiveness than CCMM
in terms of lifespan. The approximate pattern also
happens in the trajectory length, intensity and PDI. It
can be concluded that the intra-cluster cohesiveness of
CCPI is better than that of CCMM. The comparison and
analysis show that the physical index system could
serve as a feasible method of TCs classification.

Table 5. CV values of CCPI and CCMM and NSE values in lifespan, trajectory length, intensity and PDI.

Physical index CV  Cluster A/1 Cluster B/Il  Cluster C/[ll  Cluster D/IV Cluster E/V ~ Mean  NSE
Lifespan (d) CV, 0.42 0.58 0.28 0.47 0.25 0.40 021
CVy, 0.45 0.59 0.27 0.58 0.47 0.47
. CV 0.39 0.60 0.26 0.52 0.21 0.40
Trajectory length (k r
rajectory length (km) 0.42 0.66 0.25 0.58 0.45 047 032
Intensity (ms™) CV, 0.33 0.38 0.28 0.38 0.22 0.32 ~0.06
CVy 0.41 0.57 0.29 0.46 0.44 0.43
PDI (x107° m's?) CV, 0.95 1.32 0.80 1.20 0.67 0.99 0.05
CV, 1.33 1.76 0.85 1.77 1.28 1.40

3.3 Theoretical analysis

The approach applied in this paper had the TCs be
quantified into 11-dimensional vectors, while the TCs’
information in the CCMM were simplified into five
dimensions. It is a common view that much helpful and
essential information would be omitted or neglected
when converted into low dimension. As for the TCs
classification, once the cluster space was condensed
from eleven dimensions into five dimensions, the TC
samples’ information would be distorted at the
meantime, which can be demonstrated by a simplified
model as follows. In Fig.2, there are six vectors with
equal length and named a, b, ¢, d, e, and f separately. If
analyzed in a 2-dimensional perspective, the vectors
would be divided into three clusters (i.e., @ and f, b and
¢, d and e) owing to their parallel orientations.
However, if analyzed in single dimensional perspective
alone, for example considering horizontal axis merely
and neglecting vertical axis, the vectors would be
divided into three clusters (i.e., @ and ¢, b and f, d and
e). It is obvious to know that the classification results of
the two methods are different and the 1-dimensional
classification result is unreasonable due to incomplete
information.

Although CCMM has taken the trajectory and
wind speed into consideration, the method neglected the
temporal and power-related attributes, which lowered

the dimension of the TCs’ information and could
possibly lead to a distortion in classification. By the
physical index system, CCPI expanded the cluster space
into eleven dimensions as much as possible, allowing
for the comprehensive attributes of TCs’ trajectory,
time and power, therefore the resultant TCs clusters
behaved  better intra-cluster  cohesiveness  and
inter-cluster divergence in separate attribute.

g
b
C
=,
-+
a d
\
X

Figure 2. Vectors a, b, ¢, d, e and f.

4 TC CLUSTERS

4.1 Trajectory aitributes
The trajectories of TCs in CCPI and all TCs are
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shown in Fig.3. Fig4 (a) exhibits the distribution of
trajectory length of CCPI and all TCs. In general, the
WNP TC trajectories can be summarized into
straight-moving (cluster B, C and D) and recurving
types (cluster A and E).

Cluster A contains 590 TCs (see Table 2) with an
average trajectory length of 3381.56 km, slightly longer
than the gross average length of 3056.58 km. TCs in
cluster A are active in most of concerned marine
regions, nevertheless only a few TCs make landfall in
the east coast of China literally. TCs in cluster B are
short straight-moving trajectories with the minimum
average length of 1282.91 km. The majority of active
TCs in cluster B are usually restricted in the region of
the SCS and impinge on the southeast coast of China.
The longest straight-moving trajectories are found in

cluster C with an average length of 3818.50 km. TCs in
cluster C move west after genesis and mainly affect the
southeast coast of China, Taiwan Island and the
Philippines. The average trajectory length of cluster D is
1541.11 km, which is slightly longer than that of cluster
B. TCs in cluster D follow straight trajectories across
the Philippines and the SCS after genesis. The
influenced scope of cluster D resembles to cluster B and
cluster C. Cluster E is recurving, accounting for 16.02%
of all TCs, with the longest average trajectory length of
5609.08 km. The trajectories in cluster E are
characterized by a typical parabolic shape, which turns
from northwest to northeast in the seas east of Taiwan
Island. The activity of TCs in cluster E is similar to that
of cluster A, while only a few TCs land in the coastal
areas of China.
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Figure 3. Trajectories for the CCPI and all TCs.
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Figure 4. Distribution of trajectory length (a), lifespan (b) and intensity (c) for the CCPI and all TCs. The boxes show the 75th and
25th percentiles (upper and lower bounds of the box), the median (bar in middle), the mean (asterisk), maximum and minimum

(dashed line) of the distribution.

4.2 Time attributes

The distribution of lifespan for the CCPI and all
TCs is shown in Fig.4(b). Fig.5 illustrates the monthly
average occurrence frequency of TCs. By contrasting
the distribution of lifespan and seasonality for the CCPI,
it is easy to know that the five clusters differ in

temporal characteristics.

In general, the average lifespan of the WNP TCs is
6.19 d, and the main active period varies from June to
November, especially in August. TCs in Cluster A, B
and D occur most actively in August. Among the three,
cluster A has the similar pattern of active period with
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the overall TCs, while the active period of cluster B is
prior to cluster A, and cluster D has a relatively
unapparent active period. However, the lifespan of the
three clusters is shorter than the average lifespan. The
lifespan of cluster D (3.61 d) is the shortest among five
clusters. TCs in cluster C have a longer active period
(from July to November) with two peaks in August and
October separately. TCs in cluster E have the latest
active period with highest occurrence frequency in
October. TCs in the two clusters have a longer lifespan
which is obviously higher than the average level. The
lifespan of cluster E (10.22 d) is the longest among the
five clusters. The analysis of the five clusters’ time
attributes demonstrates that TCs with a late active
period usually have a longer lifespan, such as the cluster
E and C.

The interannual variation of TCs has been analyzed
as well. The annual gross TCs number and the quadratic
fitting curve for the CCPI and all TCs are shown in Fig.
6. From 1949 to 2013, there is an average of 31.98 TCs
happened in the WNP every year. The occurrence
frequency of the WNP TCs presents a trend of decrease

24 24

[ [—=— Cluster A
7 F—e—Cluster B|- ===~~~
[ [—&— Cluster C
—w— Cluster D
[ |—— Cluster E
| [—<¢— All

A~

Number

w

Figure 5. Monthly average number of TCs for the CCPI and
all TCs.

in the last 40 years. Most of the clusters (cluster B, C,
D, and E) keep a similar decreasing trend from 1970s to
2013. However, the number of TCs of cluster A has
increased slightly in general.
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Figure 6. Annual TC number and its quadratic fitting curve for the CCPI and all TCs.

4.3 Power attributes

According to the Classification of Tropical
Cyclones Standardization (GB/T 19201-2006) released
by Standardization Administration of the People’s
Republic of China, TCs are divided into six stages:
tropical depression (TD, 10.8 ms™ < MSW < 17.1 ms™),
tropical storm (TS, 17.2 ms™ £ MSW < 244 ms™), severe
tropical storm (STS, 24.5 ms™ < MSW < 32.6 ms™),
typhoon (TY, 32.7 ms™ < MSW < 414 ms™), severe
typhoon (STY, 41.5 ms™ < MSW < 50.9 ms™) and super
typhoon (Super TY, 51.0 ms™ £ MSW). The percentage
of TCs with TD, TS, STS, TY, STY and Super TY
strength is given in Fig.7. The distribution of intensity
for the CCPI and all TCs is illustrated in Fig.4(c).

From Fig.7, it is easy to see that cluster E has
selected most of the Super TYs from the total TCs and
the Super TY are dominant in cluster E. Therefore, TCs
in cluster E are the strongest among all clusters, with an
average intensity as high as 61.11 ms ™. Unlike the
cluster E, the TYs and TSs account for most of TCs in
cluster A, whose intensity is nearly the same to the
overall level. The majority of TCs (87.84%) in cluster B
usually reserve in the stage of STS, and only a small
quantity of them deteriorate into TYs. Similarly, only a
few TCs (19.77%) of cluster D have developed into
TYs. The intensity of the two clusters is comparatively
weak, both lower than 25 ms™'. Contrarily, most of the
TCs (89.61%) in cluster C are TYs, STYs or Super
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TYs. As a result, TCs’ intensity (49.09 ms™) in cluster
C is quite much higher than the average intensity.

The PDI (mentioned in section 2) is used as a
comprehensive index of lifespan and intensity. A higher
PDI value indicates the region is relatively more
severely affected by the TCs. Fig.8 exhibits PDI
distribution of TCs in each cluster and TCs in total. The
blue areas illustrate the gross influence sphere of TCs.
And the red areas represent the most gravely impacted
extents.

From the calculation results, apparently each
cluster shows individual characteristics in effect on
specific region. The two recurving clusters (cluster A
and E) exhibit similar influence sphere, but the TCs in
cluster E have a more severe impact region, which is
located in the seas on the northeastern of the Philippines
and the eastern of Taiwan Island. The region affected
by TCs of cluster A is the eastern of Taiwan Island and
southern Japan. The three straight-moving clusters
(cluster B, C and D), have a slightly narrower influence
sphere compared with the two recurving -clusters,
moreover TCs in cluster C have a strong effect on the

Cluster A Cluster B
)

seas between the Philippines and Guam, and the most
seriously impacted extents of cluster D lie in the
northern part of the SCS. In general, the recurving WNP
TCs have severe influence on the seas on the eastern of
Taiwan Island and the Philippines.
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Figure 7. Percentage of TCs with different strengths for the
CCPI and all TCs.
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Figure 8. Distribution of the PDI for the CCPI and all TCs.

5 CONCLUSIONS AND DISCUSSION

A method for classification of TCs by using
K-means clustering algorithm with the physical indexes
is developed. This method emphasizes the trajectory,
time and power attributes of TCs. The specific
information by this method is converted into vectors
composed of nine physical indexes. The TC best-track
dataset of the WNP (including the SCS) during 1949—
2013 obtained from the CMA is analyzed and compared
in order to comprehend the space-time and power
properties. The applied WNP TCs have been
categorized into five clusters and the conclusions are as
follows.

(1) Each TC can be quantified by using an

11-dimensional vector, including genesis location
(latitude and longitude coordinates), dissipation location
(latitude and longitude coordinates), trajectory length,
trajectory direction, mean deflection angle, lifespan,
seasonality, intensity and PDI. The indexes describe the
TCs objectively and elaborately, and it proves to be an
effective and comprehensive way to quantify TCs’
attributes.

(2) By the comparison with the classification
results of the mass moments,the high CV values and
NSE values of CCPI indicate that the classification of
physical index system has a higher degree of
intra-cluster cohesiveness and inter-cluster divergence,
and it verifies that this is a feasible method to classify
TCs.
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(3) Two clusters of recurvature (cluster A and E)
and three clusters of straight-movement (cluster B, C
and D) are distinguished. The three straight-moving
clusters have roughly the same motion pattern: move
west after genesis and then dissipate in southeastern
China and the west of the SCS. Both clusters A and E
have a relatively large scope of motion, but only a few
TCs impact the eastern part of Chinese mainland.

(4) Most of the clusters have an active period in
August, and the lifespan of a cluster gets longer when
its active period is relatively late. From the long-term
scale analysis, the TCs in the WNP show a declining
trend in the last 40 years, except for cluster A.

(5) The TC composition of every cluster differs
from each other, and each cluster has a distinctive
impact region, that is represented by the PDI
distribution. Amongst the five clusters, TCs in cluster E
is the strongest, and has caused severe influence on the
seas of the northeastern of the Philippines and waters on
the eastern of Taiwan Island.

This approach has a potential advantage of
compatibility, which means that the physical index
system is extensible. The heavy rainfall caused by TCs,
as a significant inducing factor of TC disasters, often
leads to urban flood and waterlogging and brings about
enormous economic loss and casualty. Supposing that
the TC rainfall temporal-spatial process could be
quantified and imported into the physical index system,
the prevention and estimation of TC disasters would be
much more reliable and exhaustive.

Further work will explore the landfall probability
distributions and possible landing intensities of different
clusters. The El Nifio-Southern Oscillation (ENSO)
event will lead to global climate anomalies that make
TC activity abnormal. In recent years, many scholars
have studied the impact of different types of ENSO
events on TCs activities in the Pacific. However, there
are few studies on ENSO events based on TC
classification. As TCs properties are based on the
meteorological conditions, the relationship between
ENSO and each cluster of TCs will be investigated in
the further work.
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