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Abstract: Based on the adaptive network fuzzy inference system (ANFIS), methods to filter out the noise of 
impact factors from the main signal are discussed. Focusing on the abnormal weather conditions in 2010, we 
use the delay-relevant method to analyze the five members of the summer monsoon system that had the 
largest effect on the subtropical high anomalies from the observational data. ANFIS is suitable for research 
and simulation of subtropical highs that are difficult to describe accurately with dynamics, allowing the 
effect of five factors on the subtropical high anomalies to be examined. Our results show that the Mascarene 
cold high, the Indian monsoon latent heat flux, and the South China Sea monsoon trough had the largest 
effect on the subtropical high anomalies. Diagnostic analysis, with genetic algorithms (GA) and dynamical 
reconstruction theory, reconstructed the nonlinear dynamical model of the subtropical high and its main 
factors objectively and accurately from the sequence of observations in 2010. Furthermore, a dynamically 
extended forecast experiment is performed. The forecasts for the subtropical high area index, the Mascarene 
cold high index, the Indian monsoon latent heat flux, and the South China Sea monsoon trough index all 
show a strong short-term effect over less than 25 days. The forecasting trend is accurate, and the error rate is 
no more than 7%. Our results provide new insight and methods for research on the association between the 
western Pacific subtropical high and the East Asian summer monsoon system, and for the prediction of the 
western Pacific subtropical high index. 
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1  INTRODUCTION  

The western Pacific subtropical high (WPSH) is 
an important component of the East Asian summer 
monsoon (EASM) system (Miyasaka and Nakamura[1]) 
and its intensity and position show complex seasonal 
evolution. In summer, the WPSH reaches its 
northernmost position and strongly affects the rainfall 
over China and Japan[1]. Changes in the position and 
intensity of the WPSH also affect the rainy season, 
causing heavy rain, floods, and drought in China. 
Recently, persistent anomalies in the high have 
resulted in frequent severe meteorological disasters. 
For example, the catastrophic Yangtze River floods in 

August 1998 were induced by the abnormal 
southward movement of the subtropical high (SH): the 
continuous heavy rainfall that lasted for more than 30 
days in the Huaihe River Basin in 2003 resulted from 
the abnormal westward motion of a strong SH 
swinging between northern and southern latitudes of 
24°N; both the sustained high temperatures in 
Chongqing and eastern Sichuan in the summer of 
2006 and heavy rains in Huaihe River Basin in July 
2007 arose from the continuing westward movement 
of the seasonal SH; and 14 storms from May to July in 
2010 in South China and Jiangnan region were caused 
by abnormal SH activity. Therefore, understanding 
the variability in the anomalies of WPSH is essential 
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for estimating the variation in the monsoon climate 
over East Asia. 

The WPSH is a central topic in atmospheric 
sciences, and many East Asian scientists have studied 
WPSH extensively, owing to its dominance in East 
Asian climates. The seasonal variation of WPSH is 
closely related to the onset and withdrawal of the 
EASM system. The abrupt northward movement of 
WPSH from winter to summer is accompanied by 
sudden changes in the circulation patterns over the 
East Asian monsoon area (Tao et al.[2]). The 
distribution of summer rainfall in China is associated 
with seasonal variations in the intensity, structure, and 
location of WPSH (Tao and Wei[3]; Wang and Xue[4]). 
Zhang and Tao[5] reported that the secondary 
northward shift of the SH ridgeline is closely related 
to the secondary northward shift of the low-level west 
wind at the equator and the northward equatorial 
convection. Xu et al.[6, 7] argued that the development 
and strengthening of convection over Bengal led to 
the convection interruption near the South China Sea 
and West Pacific Ocean, and to the strengthening and 
westward extension of the SH western ridge. Changes 
in WPSH would influence the Mei-yu front by 
affecting the convergence of tropical water vapor with 
extratropical airflow (Ninomiya and Kobayashi[8]; 
Zhou and Yu[9]). The WPSH also plays a major role in 
modulating weather and climate in Korea and Japan 
(Kurihara[10]). 

Understanding the laws governing the behavior of 
the WPSH has been a focus of much research. Ren et 
al.[11] showed that the dynamical and thermal 
mechanism of SH short-term variability was closely 
related to the abnormal activity of South Asian high 
pressure and the high-latitude circulation system. 
Zhang et al.[12, 13] analyzed the effect of thermal 
factors, such as solar radiation heating, monsoon 
rainfall, and convective condensation heating of the 
monsoon trough precipitation, on the shape and 
stability of the SH. The relationship between the 
position of SHs and monsoon disturbance in the South 
China Sea and Indian Ocean was determined 
(Zhang[14]). The dynamic mechanism of the 
teleconnection between the East and West Pacific SH 
was analyzed (Zhang et al.[15]; Grinsted and Moore[16]). 
However, studies are mainly of diagnostic analysis of 
the relationship between SHs and the EASM. Because 
the activity and aberrance of SHs is complex (Cao et 
al.[17]), the mechanisms leading to the development 
and maintenance of the WPSH are still disputed.  

It is still difficult to determine which factors 
affect complex weather systems, such as SHs, the 
nonlinear relationship between the factors, and to 
what degree different factors affect the SH system. 
Fuzzy systems provide a simple, effective way to 
extract summer monsoon factors affecting the SH 
anomalies from limited observations (Zhang[14]), to 

refine and summarize qualitative rules and implicit 
mapping relationship from observations, and 
incorporate them into a quantitative control system 
and diagnostic prediction model. The adaptive 
network fuzzy inference system (ANFIS) has many 
characteristics, such as fault-tolerance, adaptive 
learning, and nonlinearity, which make it suitable for 
investigating phenomena, such as SHs, that are not 
accurately described by dynamics. Initially, we 
discuss the effect and contribution of key members of 
the EASM on the SH anomalies in 2010. Next, the 
three most significant factors are identified, which are 
the Mascarene cold high index (MH), the Indian 
monsoon latent heat flux (FLH), and the South China 
Sea monsoon trough (ST). 

Physical mechanisms of complicated weather 
system activity and abnormalities can be described by 
dynamical models of meteorology elements or 
weather systems, which are obtained by inverting the 
time series of the observed data. To address the local 
convergence of errors and their calculation during the 
inversion, Zhang et al.[18] introduced genetic 
algorithms (GA) to improve the model. Zhang et al.[19] 
reported the inversion of the nonlinear dynamical 
forecast model of the SH index, and achieved good 
results. Because the SH is a complex system with 
many factors, using a single modeling factor restricts 
the model reasonability. Thus, the model factors 
should be carefully chosen and extracted objectively. 
The SH is a member of and interacts with the EASM 
system. To refine the dynamical model of the 
subtropical high area index (SI) other members of the 
monsoon system with a stronger correlation with SI 
can be introduced. 

In this work, the SI is defined as a measurement 
of the scope and form of SHs. In Section 2, data from 
the last 30 years is reanalyzed and ANFIS is 
introduced. In Section 3, three summer monsoon 
factors that have a stronger correlation with SI are 
chosen with ANFIS. The dynamical model inversion 
of SI and its impact factors is conducted in Section 4 
to overcome the problem of single model elements. A 
dynamical forecast experiment is performed in 
Section 5. Finally, we present a summary of our 
results in Section 6. 

2  RESEARCH DATA AND METHODS 

2.1  Research data 

Daily reanalysis data from May to October from 
the last 30 years (1985–2014) are provided by the 
USA National Center for Environmental Prediction 
(NCEP) and the National Center for Atmospheric 
Research (NCAR), and include: (1) horizontal wind 
field and geopotential height field at 850 and 200 hPa, 
geopotential height field at 500 hPa, and sea level 
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pressure field with a resolution of 2.5°×2.5°; (2) the 
sensible heat and convective precipitation rate in a 
Gaussian grid; and (3) the observed long wave 
radiation (OLR) data from NOAA satellites. 
2.2  ANFIS 

ANFIS can be trained and adapted to improve 
the approximation efficiency and reduce errors, 
whereas conventional fuzzy systems rely on 

experience to adjust the membership functions. 
The fuzzy inference system is based on 

composite learning, with the after-transfer gradient 
descent method and the least squares method to 
identify the linear and nonlinear parameters, and 
contains a series of "IF ... THEN ..." rules, shown in 
Fig.1.

 

 
Figure 1. The structure diagram of ANFIS fuzzy system.

The appropriate membership functions are 
gradually deployed to satisfy the relationship between 
the fuzzy reasoning input and output. The main rules 
are as follows. 

Rule 1: If x  is 1A  and y  is 1B , then 

1 1 1 1h p x q y r= + + . 

Rule 2: If x  is 2A  and y  is 2B , then 

1 2 2 2h p x q y r= + + . 

Here, ,i iA B  are the mapping values of 

membership functions; ,x y  are the assumptions and 
training input of the fuzzy inference system; GPD =  
are fuzzy inference conclusions, where 1,2i = . The 
weighted average method is used for non-fuzzy 
processes, and the fuzzy inference output is 

1 2
1 2

1 2 1 2

w wh h h
w w w w

= +
+ +

, where, iw  is the 

output weight of node i. The Takagi-Sugeno fuzzy 
inference system is:

 

1 1 2 2 1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )h w h w h w x p w y q w r w x p w y q w r= + = + + + + +   (1)     

Because the premise and reasoning parameters 
have been decoupled in the composite learning 
process and ANFIS is an adaptive network, its 
learning efficiency is higher than a neural network. 
Further fuzzy approximation and signal de-noising 
methods are described elsewhere (Zadeh[20]; Takagi 
and Sugron[21]). 

3  DETECTION AND ANALYSIS OF FACTORS 
AFFECTING SH INTENSITY 

3.1  Subtropical high activity 

The WPSH activity, which is the dominant 
component of the EASM system, varies seasonally 
and is most frequent during the boreal summer. 

WPSH migrates northward in a stepwise manner 
characterized by two distinct northward jumps. In 
mid-June, WPSH jumps northward for the first time, 
and the Mei-yu season in the Yangtze River valley, 
Japan, and Korea begins. The second northward jump 
usually occurs in late July or sometimes in August. 
Then, WPSH shifts to its most northern position, 
signaling the end of the Mei-yu season in the Yangtze 
River valley, Japan, and Korea, and the start of the 
rainy season in north and northeastern China (He et 
al.[22]). 

The abnormal activity of SHRL often results in 
subtropical circulation anomalies in East Asia and 
extreme weather events in China such as the SH 
double ridge in 1998 (Miyasaka and Nakamura[1]; Tao 
et al.[2]; Nitta[23]; Chen [24]). Thus, the SHRL position 
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and its abnormal activity often have a large effect on 
the summer weather in China. 
3.2  Correlation analysis and statistical significance 
test 

The correlation coefficient, xyr
, measures the 

relationship between any two variables. For the time 
series of two variables, yx, , with the same sample 
length, n , the correlation coefficient, rxy, can be 
calculated with: 
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The statistical significance of xyr
, or simply r, 

can be evaluated by using the t-test. The constructed 
statistic t is expressed as: 

            
2
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= −
−      (3) 

Statistic t follows the t-distribution with n-2 
degrees of freedom. Given the significance level,α , 

we check the t-distribution table: if αtt > , the two 
variables are significantly correlated. For a fixed 
sample size, the critical value of the correlation 

coefficient, cr , can be obtained by the criterion 
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If crr > , the significance of the t test is 
accepted. 
3.3  Correlation analysis between members of EASM 
system and SI index 

The SI reveals the relationship between members 
of the Asian summer monsoon system and SH. The SI 
is defined by the Central Meteorological 
Observatory[25] as characterizing the range and 
intensity of the SH, where the geopotential grid points 

have an average height greater than 588 gpm at 500 
hPa with resolution of 2.5°×2.5°, north of 10°N, 
within the range 110°E to 180°E. The higher the value 
of SI, the wider the range and the higher the intensity 
of the SH. 

EASM has many members; there are many 
factors that affect SH, 21 of which are closely related 
to the WPSH (Xue et al.[26]; Yu et al.[27]). If all the 
factors were used for modeling, the equations would 
be too complex. Therefore, the correlation analysis 
method is used to determine the relationship between 
these factors and SI based on the average data from 
the last 30 years (1985-2014). Definitions of each 
factor are given in Xue et al.[26] and Yu et al.[27]. The 
values of these factors can be calculated from 
NECP/NCAR data, as in Section 2. The best 
correlation factors are identified for further study, 
which are as follows. 
(1) The MH: Average grid points of sea level pressure 
in the [40°-60°E, 25°-35°S] region. 
(2) The Somali low-level jet (SLLJ): The 850 hPa 
average longitude wind in the [40°-50°E, 5°-5°N] 
region. 
(3) The South China Sea monsoon trough (ST): The 
average of OLR grid points located in the 
[110°-130°E, 7.5°-17.5°N] region. 
(4) The Indian monsoon latent heat flux (FLH): The 
latent heat flux in the [80°-100°E, 12.5°-22.5°N] 
region. 
(5) The monsoon circulation index at Bay of Bengal 
(J1V): The average grid point J1V = V850-V200 in 
the [80°-100°E, 0°-20°N] region. 
    The delay results associated with the SI are 
shown in Table 1. The correlation coefficient between 
the five factors and SI exceed 0.85. The MH in the 
southern hemisphere increases the SH early; this is a 
positive correlation and indicates a very close 
relationship, consistent with previous research[26]. The 
close relationships among the SLLJ, ST, FLH, J1V, 
and SI are also consistent with previous research (Yu 
et al.[27]; Wang and Cao[28]).

Table 1. The correlation analysis of five main factors and the subtropical high area index. 
No. five main factors Correlation analysis (Time) 
1 Mascarene cold high strength index (MH) 0.85 (8d) 
2 Somali low-level jet (SLLJ) 0.90 (6d) 
3 Indian monsoon latent heat flux (FLH) 0.87 (4d) 
4 Tibetan high activity index (XZ) -0.86 (-2d) 
5 The monsoon circulation index at Bay of Bengal (J1V) 0.91 (2d) 

 
 
3.4  Mapping features of the fuzzy inference system 
between SI and EASM 

ANFIS uses the Sugeno fuzzy inference system 
with the 2N rule to train the input data, where N is the 

dimension of input data (generally N<7). After fuzzy 
system training, the data is output as a fuzzy 
interference system matrix. In this paper, ANFIS 
consists of five inputs and one output. Model training 
and reasoning simulation use Matlab in the Fuzzy 
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Toolbox simulation environment. Based on the results 
of the analysis in section 3.3, the five input data sets 
are MH 8 days ahead, SLLJ 6 days ahead, ST 3 days 
ahead, FLH 2 days ahead, and J1V 1 day ahead, and 
the SI output data set is used for training. The training 
periods of SI are from May 1 to October 31 in the 
average 30-year data (total of 184 days).  

After 250 training iterations, the specified error 
magnitude is reached (10-2), to establish a fuzzy 
inference system and fuzzy mapping relationship 
between the five impact factors and SI. For simplicity 
in figures and calculations, MH, SLLJ, ST, FLH, J1V, 
and SI are taken as anomalies, and are divided by 
1000, 10, 100, 10, 10, and 200, respectively. The 
fuzzy inference system is a multi-dimensional system. 
For convenience, 10 different three-dimensional 
cross-sections are analyzed and compared; the four 
most representative three-dimensional cross-sections 
are chosen for analysis. 

Figure 2 is the mapping relationship between the 
outputs of MH 8 days ahead and SLLJ 6 days ahead, 
and the input of SI. Inputs 1 and 2 are SLLJ 6 days 
ahead and MH 8 days ahead, respectively, whereas 
the output is the SI lagging behind. When the MH 
high is 8 days ahead strengthens and shows outbreaks 
(positive anomaly), regardless of whether SLLJ 6 days 
ahead 6 days strengthens and shows outbreaks or 
weakens (positive or negative anomalies), SH 

strengthens and shows outbreaks (positive anomaly), 
as shown by points A and B. The MH 8 days ahead is 
weak (negative anomaly). Regardless of whether the 
SLLJ in 6 days is strong or weak (positive anomaly or 
negative anomaly), SH is weak (negative anomaly), as 
shown at points C and D. The effect of the MH on the 
SH is more significant than that of the SLLJ. 

In contrast to Fig.2, Fig.3 shows that when the 
MH 8 days ahead strengthens and shows outbreaks 
(positive anomaly) and the ST 3 days ahead is weak 
(negative anomaly), the SH intensity changes little 
and does not increase the outbreak (around zero), as 
shown at point A. As the ST 3 days ahead increases 
from the smallest negative anomaly to 0 and then 
increases to the maximum positive anomaly, the 
corresponding SH strength increases from 0, suddenly 
decreases to 0, and then continues to increase until it 
reaches the maximum SH strength (maximum positive 
anomaly), as shown by points B and C. The MH 8 
days in advance is weak (negative anomaly). If the 
corresponding the ST 3 days ahead is also weak 
(negative anomaly), SH is weak (negative anomaly; 
point D). However, if the ST 3 days ahead increases 
to outbreak (positive anomaly), which may offset the 
effect of the MH on SH, the SH strength returns to 
normal (point E). Therefore, the MH and ST have a 
significant effect on the SH strength, particularly 
when they interact.

 

 
Figure 2. The fuzzy reasoning map of MH 8 days ahead (input2), SLLJ 6 days ahead (input1) and SI (output). 
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Figure 3. The fuzzy reasoning map of MH 8 days ahead (input2), FLH 4 days ahead (input1) and SI (output).

Similar to the SLLJ in Fig.2, in Fig.4, when the 
MH 8 days ahead is increased to outbreak (positive 
anomaly), regardless of whether J1V is 2 days ahead 
is strengthened or weakened (positive or negative 
anomaly), the SH will be increased to outbreak 
(positive anomaly), at points A and B. In contrast to 
Fig.2, the increase in SH changes little. If the MH 8 

days ahead is weak (negative anomaly), regardless of 
whether the J1V 2 days ahead is strong or weak 
(positive or negative anomaly), the SH will be weak 
(negative anomalies), as shown in points C and D. In 
contrast to Fig.1, when J1V gradually increases, the 
SH intensity weakens. Because of the effect of the SH 
strength, the MH is more significant than the J1V.

 

 
Figure 4. The fuzzy reasoning map of MH 8 days ahead (input2), J1V 2 days ahead (input1) and SI (output).

Figure 5 shows that there is a negative 
correlation between FLH and SH; therefore, when the 
MH 8 days ahead strengthens to outbreak (positive 
anomaly) and the corresponding FLH is controlled by 
the lowest pressure (maximum negative anomaly), the 
SH strengthens to outbreak (point A). If FLH is 
controlled by the highest pressure (positive anomaly), 

although the SH strength is high, the strengthened 
outbreak is not obvious (point B). If the MH 8 days 
ahead is weak, the FLH 2 days ahead increases from 
the smallest negative anomaly to 0, and then continues 
to increase to the maximum positive anomaly. The 
corresponding SH intensity anomalies is reduced from 
0 to the minimum, and then continues to increase, as 
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shown by points C–F. When FLH 2 days ahead 
achieves the maximum positive value, the SH 
intensity anomalies may either return to 0, which 
means it returns to normal; or remain small, which 
means the SH remains weak. Thus, the effects of the 
MH and FLH on the SH intensity are significant, 
although MH shows a positive effect and FLH shows 

a negative effect. The other six three-dimensional 
cross-sections are similar to the previous four, and are 
not described here individually. Comparing all the 
fuzzy inference results, we can conclude that the 
effect of the MH, ST, and FLH on SH strength is 
more significant than the other two factors.

 

 
Figure 5. The fuzzy reasoning map of MH 8 days ahead (input2), XZ 2 days behind (input1) and SI.

The reasoning mapping feature largely reflects 
the main features of the relationship between SH and 
the five related factors in the summer monsoon system 
in 2010. Because this fuzzy inference system is 
entirely based on the time-series data collection of 
five related factors in the summer monsoon system 
and SH, it is objective and credible.  

4 RECONSTRUCTION OF DYNAMICAL 
MODEL OF SI AND ITS IMPACT FACTORS 

Takens[29] set out the principles for 
reconstructing dynamical systems from time series of 
observed data in phase space reconstruction theory. 
The study suggested that the evolution of any 
component in the system could be determined by 
other components that interacted with it, and the 
information about the components could be obtained 
from the evolution of the other correlated components. 
Therefore, it is possible to reconstruct a dynamical 
model of system evolution from a time series of 
observed data. We introduce the concept of dynamical 
system retrieval and model parameter optimization 
and use four time series for SHRL, MH, ST, and FLH 
to reconstruct the dynamical model based on our 
analysis of the SH and its impact factors in abnormal 
years. 
4.1  Reconstruction of the dynamical model 

Suppose that the physical law of a nonlinear 
system evolving with time can be expressed as: 

         

1 2( , ,..., ,..., ), 1, 2,....,i
i i N

dq f q q q q i N
dt

= =  (5) 

where
if  is the generalized nonlinear function of 

1 2, ,..., ,...,i nq q q q  and N  is the number of state 
variables. N can generally be determined by the 
complexity of the dynamical system and measured by 
calculating its fractal dimensions. The difference form 
of Eq. 5 is: 

              

),...,,...,,(
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1,......3,2 −= Mj      (6) 

where M  is the length of the time series of the 
observed data. The model parameters and the system 
structure can be obtained by an inversion algorithm 
based on the observed data. 1 2( , ,..., ,..., )j t j t j t j t

i i Nf q q q qΔ Δ Δ Δ

is an 
unknown nonlinear function and we assume that 

1 2( , ,..., ,..., )j t j t j t j t
i i Nf q q q qΔ Δ Δ Δ

 contains two parts: jkG , 
representing the expanding items containing variable 

iq , and ikP  representing the corresponding parameters 
that are real numbers ( 1,2,...i N= , Mj ,...2,1= , 

1,2,...,k K= ). We assume that:  
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The matrix form of Eq. (7) is   
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Coefficients of the generalized unknown Eq.(8) 

can be identified through inverting the observed data. 
Given vector D, vector P can be solved to satisfy the 
above Eq.(8). The system is nonlinear with respect to 
q  and linear with respect to P , assuming that P is 
unknown. Therefore, the classical least squares 
method can be used to estimate the equation, and the 
regular equation DGGPG TT =  can be derived by 
minimizing the residual sum of squares 

( ) ( )TS D GP D GP= − − . 
Because TG G  is usually a singular matrix, its 

eigenvalues and eigenvectors can be solved easily. 
After removing eigenvalues and eigenvectors with 
values of 0, the remaining components are 
K numbers of 1 2, ,..., iλ λ λ  that can make up a diagonal 
matrix, kΛ , and the K  numbers corresponding to the 
eigenvectors form the diagnostic matrix, LU .  

HDP =  can be solved with i

i
L

GU
V

λ
=

 and 
1 T

L LH U V−= Λ , and parameter P can be obtained. 
Based on this approach, coefficients of the 

nonlinear dynamical systems can be determined and 
the nonlinear dynamical equations of the observed 
data can be established. 

4.2  Dynamical model retrieval of SI and its impact 
factors by genetic algorithms 

Existing parameter estimation methods, such as 
the neighborhood search method and the least squares 
method, are mostly one-way search methods that must 
travel the entire parameter space, resulting in a low 
search efficiency. The limitation of the error gradient 
convergence and its dependence on the initial solution 
mean that the parameter estimation often locates the 
local optimum rather than the global optimum 
(Wang[30]). GA are now widely used for global 
optimization. GA are excellent for global searching 
and parallel computing; error convergence rates can 
be improved greatly by GA, thus GA are useful for 
optimizing parameters[30]. Therefore, we use GA to 
reconstruct the dynamical models and optimize the 
model parameters based on the SI, ST, MH, and FLH 

time series, 4321 ,,, TTTT , respectively. 
With the minimum square 

error ( ) ( )TS D GP D GP= − − as the boundaries, the 
model parameter inversion method follows the 
principle described in Section 4.1 and seeks 
populations (solutions) and a parallel mode to search 
for the optimal parameters in the parameter space. 

There are a many second-order linear equations 
in geophysical fluid dynamics. Equations that contain 
linear and quadratic terms, such as the Navier-Stokes 
equation, are used to model the main characteristics of 
the atmosphere and ocean. The following nonlinear 
second-order ordinary differential equations are used 
for the retrieval and reconstruction of the dynamical 
model of SH and its impact factors. In the retrieval 
model, the data is selected as follows from the average 
of 30 years of data: SI for May 1 to July 31; MH 8 
days ahead of SH, from April 23 to July 23; ST 3 days 
in advance of SH, from April 28 to July 28; and FLH 
2 days ahead of SH, from April 29 to July 29. The 
total length for the four time series is 92 days. They 
are used as the expectation data to optimize and 
retrieve model parameters. 
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Suppose that parameter matrix 
1 2 9 1 2 9 1 2 9[ , ,...... ; , ,...... ; , ,...... ]P a a a b b b c c c=  of the above Eq.(9) 

is the population. The objective function is the 
minimal residual sum of 
squares )()( GPDGPDS T −−= . The individual fitness 

value is S
li

1
=

 and the total fitness value is 

1

n

i
i

L l
=

= ∑ . The idiographic steps include coding and 

creating the initial population; calculation of fitness; 

choosing the male individual; and crossover and 
variation. The calculation theory and detailed 
explanation have been described elsewhere[30]. In the 
calculation, the step length is one month. After the 
fourth cycle of the GA and optimization searching, the 
method rapidly converges on the target adaptive value 
and we can retrieve each optimized parameter of the 
dynamical equations. 

After eliminating terms with a small dimension 
coefficient, we retrieve the nonlinear dynamical 
model of SI and its impact factors as:
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In a fitting test, the effects of the SI and FLH 
time series are strong, with correlation coefficients of 
0.9023 and 0.8766, respectively. In contrast, those of 
the MH and ST time series are slightly weaker; 
although the correlation coefficients are 0.8321 and 
0.8261, respectively, they are still greater than 0.8. 

5 TESTING THE NONLINEAR MODEL 
PREDICTION OF SH AND ITS RELATED 
FACTORS 

5.1  Prediction test for 2010 
To test the effect of model prediction, we 

performed prediction tests for 2010, which was the 
year with the greatest WPSH anomalies (arrow, Fig.6). 
From May to October in 2010, SI is above the mean 
and it is at a 30-year peak. The anomaly in the WPSH 
strength resulted in unusual weather in China in 2010. 
The time series of SI, MH, FLH, and ST (August 1 to 
September 5 2010), which do not participate in the 
inversion of model, are chosen to verify the effect of 
model forecasts. SI on August 1 in 2010, MH (8 days 
ahead) on July 24 in 2010, FLH (2 days ahead) on 
July 28 in 2010, and ST (3 days ahead) on July 27 in 
2010 are taken as the initial values to be substituted 
into the nonlinear dynamic model equations. 
Numerical integration is performed to obtain a total of 
35 days of predicted SI results from August 1 to 
September 2010 (Fig.6a). The predicted results for the 
other three factors are shown in Fig. 6b–6d. The 15, 

25, and 35-day forecast effects are shown. 
Figure 6 (a) shows that the forecast effect of SI is 

still good. In the first 15 days, the forecast trend is 
accurate, with a correlation coefficient of 0.9682; the 
relative error between the forecast value and the true 
value is only 3.41%. For days 15–25, the forecast 
trend is similar to the first 15 days, and is accurate, 
with a correlation coefficient of 0.9088 and a small 
error of 4.99%. After nearly 25 days, the error begins 
to increase. For days 25–35, the forecast trend is still 
accurate; with the peaks and valleys forecasted out, 
the correlation coefficient is 0.8652, and forecast 
divergence is weak. The valley and peak numbers are 
forecasted to be slightly larger at day 29 and day 32, 
and the remaining values are forecasted more 
accurately. The error within 35 days is 9.35%. 
Fig.6b–6d shows that MH, FLH, and ST are similar to 
SI. The forecast trend within 25 days is good, with a 
correlation coefficient above 0.85; the errors between 
the forecast value and the true value are less than 7%. 
However, after 25 days, the divergence of these three 
factors increases more than SI, which is related to the 
divergence of the numerical integration later in the 
simulation; the errors also increase, reaching 
10%–15%. In particular, the divergence of MH after 
25 days in Fig.6b is larger, which may be caused by 
the higher value of SI compared with the other three 
indexes. The divergence of FLH after 25 days is small 
compared with the other two factors, which is 
consistent with the better fitting results of FLH.
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Figure 6. The 35 days forecast map of four indexes.

Figure 6 shows that although the long-term 
forecasts of SI, MH, FLH, and ST diverge, the 
short-term forecasting effects for fewer than 25 days 
are good. The errors for the indexes are less than 7%, 
which also demonstrates that the forecasts are good. 
5.2  Statistical analysis of the forecasting 
experiments 

To test the forecast performance of the inversion 
model, more experiments were performed. We chose 
another 4 years in which the SH intensity was 
abnormally strong (bigger SI) and 5 years in which 

the SH intensity was abnormally weak (smaller SI) to 
carry out integral forecast experiments for SI. We 
compared the forecast results for different time 
periods (short term, 1–15 days; medium term, 16–25 
days; long term 26–35 days) with the observed data. 
The statistical test results are displayed in Table 2. 
The forecast results for the short and the medium term 
are good, whereas the results for the long term (>26 
days) are acceptable. The results for MH, FLH, and 
ST are similar to those of SI.

 
Table 2. Correlation coefficients and root mean square errors between forecast value and real value of different events. 

Statistical tests 
Short term (1~15days) medium term (16~25 days) long term (26~35 days) Forecast events 

Correlation 
coefficient 

Root mean 
square error

Correlation 
coefficient 

Root mean 
square error

Correlation 
coefficient 

Root mean 
square error

SI bigger event1(1998. 06.21 
as initial values to forecast) 0.957 2.92% 0.812 4.51% 0.723 8.91% 

SI bigger event2(2006. 07.18 
as initial values to forecast) 0.936 2.88% 0.877 4.72% 0.776 7.98% 

SI bigger event3(2003. 07.08 
as initial values to forecast) 0.942 3.16% 0.881 3.97% 0.718 8.48% 

SI bigger event4(1983. 08.05 
as initial values to forecast) 0.958 3.40% 0.820 4.06% 0.729 7.90% 

(d) (c) 

(b) (a) 
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SI smaller event1(1984. 
07.28 as initial values to 

forecast) 
0.951 3.12% 0.815 3.43% 0.789 8.21% 

 

6 CONCLUSIONS 

Detection and analysis based on fuzzy system is 
different from the frequency structure-based filtering 
method. It uses fuzzy reasoning to identify the impact 
factors responsible for a specific contribution, and 
then filters out the interference. Therefore, this 
method can be used to analyze and detect the effects 
of different impact factors on abnormal changes in the 
atmosphere or ocean systems. We used the ANFIS 
method to determine the contribution and effect of the 
key members of EASM on the abnormal SH in 2010 
and identify the three most significant factors: the MH, 
FLH, and ST. 

 As the evolution of EASM circulation and SH 
activity is complex, it is difficult to construct dynamic 
models accurately, so we used GA to invert a 
dynamical model of SI and three significant factors 
from 30 years of observed data, and then performed 
dynamical extended forecast experiments. Our results 
show that SI has the best forecast effect. The forecast 
trend is accurate and the error within 35 days is less 
than 15%. Although MH, FLH, and ST diverged in 
long-term forecasts (more than 25 days), the 
short-term forecasts were better (less than 25 days). 
Moreover, the basic error was less than 10% and 
showed a good trend in forecasting indexes. However, 
the trough and peak forecasts were not sufficient; we 
intend to address this in future work. Based on 
statistical analysis of the forecasting experiments, the 
operability and forecast period of the inversion model 
were significantly better than conventional statistical 
forecasting methods, such as neural networks (Liu et 
al.[31]; Zou et al.[32]). Our method provides a new 
model for the investigation and prediction of complex 
weather and climate systems, particularly where exact 
dynamical models cannot be obtained. 

In addition, in our model forecast experiments, 
only the initial value of the dynamical equations is 
required, unlike neural networks and statistical 
regression forecasts that require many predictors. 
Furthermore, our forecasting model also provides 
forecasts for multiple periods, in contrast to statistical 
methods that require multiple forecasting models. 
Therefore, our method has many advantages over both 
statistical forecasting models and numerical prediction 
methods. 
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