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Abstract: The Climate Forecast Systems (CFS) datasets provided by National Centers for Environmental 
Prediction (NCEP), which cover the time from 1981 to 2008, can be used to forecast atmospheric circulation 
nine months ahead. Compared with the NCEP datasets, CFS datasets successfully simulate many major 
features of the Asian monsoon circulation systems and exhibit reasonably high skill in simulating and 
predicting ENSO events. Based on the CFS forecasting results, a downscaling method of Optimal Subset 
Regression (OSR) and mean generational function model of multiple variables are used to forecast seasonal 
precipitation in Guangdong. After statistical analysis tests, sea level pressure, wind and geopotential height 
field are made predictors. Although the results are unstable in some individual seasons, both the OSR and 
multivariate mean generational function model can provide good forecasting as operational tests score more 
than sixty points. CFS datasets are available and updated in real time, as compared with the NCEP dataset. 
The downscaling forecast method based on the CFS datasets can predict three seasons of seasonal 
precipitation in Guangdong, enriching traditional statistical methods. However, its forecasting stability 
needs to be improved. 

Key words: CFS; Optimal Subset Regression; mean generational function; Guangdong; precipitation; 
downscaling 

CLC number: P456.8      Document code: A      

                                                        

Received 2013-04-25; Revised 2014-01-29; Accepted 2014-04-15  
Foundation item: Science and Technology Program for Guangdong Province (2005B32601007); Project of 
Guangdong Meteorological Bureau (2008B05); Natural Science Foundation of China “Project 973” 
(2010CB950304); Project of Meteorological Science and Technology of Guangdong Province (200902); Project 
for Science and Technology Planning in Guangdong (2012A061400012); Science Project for Guangdong 
Meteorological Bureau (2013B08); Project for Guangdong Provincial Bureau of Science and Technology 
(2012A030200006); Project for Meteorological Center of the South China Region, China Meteorological 
Administration (GRMC2012M02); Science and Technology Planning Project for Guangdong Province 
(2011A032100006, 2012A061400012) 
Biography: LI Chun-hui, associate professor, M.S., primarily undertaking research on monsoon and tropical 
weather and climate.  
Corresponding author: LI Chun-hui, e-mail: chli@grmc.gov.cn 

1  INTRODUCTION  

Located in a monsoon zone of low-latitude East 
Asia, Guangdong province is subject to complicated 
weather and climate systems and both the subtropical 
and tropical monsoons pose tremendous influence on 
it. Consequently, abnormal precipitation occurs 
frequently during the flood season, causing huge 
economic losses. Being of great importance to disaster 
prevention and mitigation, the research on the 
precipitation of Guangdong aims at improving the 
prediction of long-term tendencies of precipitation 
and eventually setting up a new system of operational 
forecast. The air-ocean global climate model 
(AOGCM) is currently the most important and 

feasible method for estimating large-scale future 
climate across the globe, but it is not suitable for 
making accurate prediction of regional climate as it 
has low spatial resolution and lacks information on 
regional climate. Currently, two methods are able to 
make up for the insufficiency of AOGCM in this 
aspect, one being higher versions of AOGCM and the 
other the downscaling method. As huge computation 
is needed to improve the current AOGCM, 
downscaling becomes a primary approach. It is 
developed based on the argument that the scenario of 
regional climate is made on the conditions of 
large-scale (e.g. continental or even planetary scale) 
climate[1, 2] and as a result, the restrains of AOGCM 
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can be overcome by transforming the output of the 
large-scale and low-resolution AOGCM into 
information about surface climate change (like air 
temperature and precipitation) on the regional scale. 
At present, there are two ways of downscaling, either 
dynamically or statistically. Relatively speaking, the 
latter involves smaller amount of computation and 
shorter hours of computer runs, applicable for many 
different types of AOGCM. 

Although the statistical downscaling method has 
been extensively applied in estimation of future 
regional climate change outside China, it is rarely 
seen inside it. Lu et al.[3] worked on how to process 
initial data in downscaling and Chen et al.[4] 
investigated the use of downscaling in monthly 
precipitation forecast with the summary that it has 
achieved good results in forecasting the precipitation 
in China through the technique of ensemble forecast 
using T63/NCC monthly dynamic extended situation 
fields. With a downscaling model that combines 
primary component analysis with stepwise regression, 
Fan et al.[5] estimated the scenario of climate change 
in North China under different HadCM3 assumptions. 
As also shown in their real-case study of regional 
climate scenario of river basins, Ding et al.[6] 
estimated regional daily maximum, minimum 
temperature and precipitation in the 50 years ahead 
and predicted good climate extremes using statistical 
downscaling that combines primary component 
analysis with optimal subset regression (hereafter 
OSR). With an established downscaling forecasting 
method for monthly precipitation in Guangxi based on 
a BP neural network model, He et al.[7] pointed out 
that both the fitting accuracy and forecasting 
capabilities of models with current factors are better 
than those with preceding ones. Using the data of 
monthly 500-hPa geopotential heights of the Northern 
Hemisphere from 1951 to 2007 and the methods of 
downscaling and partial least squares regression, Wei 
et al.[8] studied the predictability of June-August 
precipitation in eastern China and concluded that the 
500-hPa geopotential heights from 40°E to 180° in 
East Asia are a relatively good field of downscaling 
factors. 

In this paper, the products from Climate Forecast 
Systems (CFS), a climate forecasting system 
developed at the National Centers for Environmental 
Prediction (NCEP, USA), are used. Since its 
operational run from August 2004, CFS has become 
an important tool for the monthly and seasonal 
forecast of climate at NCEP. CFS is a dynamic 
forecasting system for seasons that couples the sea, 
land and air and our atmospheric model is a global 
forecasting system from NCEP[9] with the initial 
atmospheric condition extracted from the second set 
of NCEP reanalysis. For the oceanic module, it is the 
Model V3.0 from the Geophysical Fluid Dynamics 

Laboratory of National Oceanic and Atmospheric 
Administration, USA, with the initial conditions taken 
from the data of Global Ocean Data Assimilation. In 
the horizontal direction, the model takes a 62-wave 
triangle truncated spectrum and is vertically divided 
into 64 sigma-layers with the top layer at 0.2 hPa. 
While the meridional distribution is global, its zonal 
domain is confined at 74°S-64°N. All together, the 
CFS possesses 28 years of historical forecasts 
covering 1981-2008 as well as real-time forecasting 
output (which includes forecasts for nine months 
ahead). For details, see Saha et al.[11]. Developing a 
statistical downscaling method based on the output of 
CFS, this work aims at providing fresh ideas and 
methods for the prediction of seasonal precipitation in 
Guangdong. 

2  DATA AND METHODOLOGY 

The data used in this work include those of 
precipitation from 86 meteorological stations in 
Guangdong in 1961-2009, monthly mean reanalysis 
of NCEP, including geopotential heights, wind fields 
and relative humidity, and forecasts from CFS. 

The methods used include the EOF analysis, 
OSR[12] and multivariate mean generating function 
(hereafter MMGF)[13]. 

3  VERIFICATION OF MODEL 
PERFORMANCE 

To demonstrate the good capability of CFS in 
simulating the changes in seasonal circulation, we 
compared the differences between the wind, 
geopotential height, temperature and sea surface 
temperature (SST) fields of June-August and that of 
NCEP. Fig. 1 gives differences in 850-hPa and 
200-hPa wind fields between the CFS forecasts and 
NCEP observational data. Fig. 1 shows that the CFS is 
capable of simulating features like lower-level 
cross-equatorial flow, Southwest Monsoon, 
upper-level monsoonal easterly and South Asia High 
in summer (figure omitted), but as compared to the 
observational data (Fig. 1a) its simulations of the 
lower-level southeast trade wind over the Indian 
Ocean, Somali Jet and subtropical high in the western 
Pacific are relatively weak (Fig. 1c), and those of 
upper-level monsoonal easterly and South Asia High 
are also relatively weak (Fig. 1d). The CFS also gives 
similar results for the geopotential heights at 500 hPa 
(figure omitted). 

For the surface temperature field, the CFS 
simulations differ from the observational data mainly 
in the cold error over the Asian continent (Fig. 2b). 
Yang et al.[14] conducted vertical integration of the 
temperature for the three layers of 850, 500 and 200 
hPa and computed its meridional gradient (Fig. 3). As 



No.2                              LI Chun-hui (李春晖), LIN Ai-lan (林爱兰) et al.                              145 

 
145

shown in the result, the meridional gradient of tropical 
temperature determined with the observational data 
starts to be positive, or, warmer in the north than in 
the south, from spring onwards, reaching the 
maximum in July in the area west of 90°E between 
10° and 30°N (Fig. 3a and Fig. 3c). For the meridional 
and temporal distribution, likewise, the results of the 
CFS simulation are smaller than those of the 
observational data (Fig. 3b and Fig. 3d), except for the 

area in 20-25°N in April and May. It then shows that 
the CFS simulations reflect a correlation between 
weak large-scale monsoonal circulation and weak 
meridional temperature gradient. It is also why the 
CFS simulations are relatively weak as compared to 
the NCEP observational data. In spite of what is 
presented above, the CFS is, generally speaking, able 
to simulate the variations of large-scale circulation in 
June-August.

 

 
Figure 1. Climatological mean of the wind field for June to August from 1981 to 2008 for the NCEP data at 850 hPa (a), differences 
between CFS and NCEP (b), NCEP data at 200 hPa (c) and differences between CFS and NCEP (d). 

 
Figure 2. Climatological mean of the surface temperature field at 850 hPa for June-August from 1981 to 2008. (a): NCEP data; (b): 
differences between CFS and NCEP.  
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Figure 3. Latitude-time distribution of the NCEP observations (a) and the CFS simulations (b) averaged over 40-120°E and 
longitude-time distribution[14] of the NCEP observations (c) and the CFS simulations (d) averaged over 50-20°N.

In addition, the CFS is also good at simulating the 
distribution of anomalous SST and the meridional 
expansion of warm SST[14]. Despite that the 
simulations overestimate the actual SST anomalies 
(SSTA) in the equatorial central Pacific, the CFS is 
still able of predicting the anomalous evolvement of 
Pacific SST four months ahead and that of Indian 
Ocean SST two months in advance. Besides, the CFS 
is also good at simulating the SSTA within such a 
small region as the South China Sea and predicting 
the SSTA of the Pacific during the decaying phase of 
ENSO five months in advance. Like the developing 
year of ENSO, however, the CFS-forecast SSTA of 
the tropical central and eastern Pacific are higher than 
that of the observation.  

In summary, the CFS is capable of simulating the 
seasonal change in monsoonal circulation in 
June-August, the evolution of SSTA during the 
developing and decaying stages of ENSO several 
months ahead and the variation of circulation in other 
seasons (figure omitted). For this reason, it is used as 
a way of research in this study. 

4  SELECTION OF THE PREDICTORS 

As already shown in some studies[15-25], the 
western subtropical high, Aleutian low, monsoons and 
Southern Hemisphere circulation are the systems that 
can affect the precipitation of the annually first 
raining season (from April to June) in South China. 
Their main elements are the 500-hPa geopotential 
heights, zonal wind, meridional wind and sea level 

pressure. On the basis of preceding research, the 
subsets of predictors used in this work for predicting 
the seasonal precipitation in Guangdong are the 
gridpoint data of mean sea level pressure, u and v 
wind fields, and geopotential height fields at 200, 500 
and 850 hPa. In view of the huge amount of data 
involved with each of the subsets that could lead to 
lengthy computation, the current study relies on the 
method of simultaneous correlation to determine the 
predictors for the four seasons and the annual two 
seasons of rain in the steps presented as follows. 
Correlation is sought between the time series of 
precipitation anomalies and meteorological elements 
averaged over different seasons for the 86 stations in 
Guangdong province and the SST field and a 
significance test is performed on the result. If the 
region passing the significance test is as large as or 
more than 100 square degrees of longitude by latitude 
and what the same-sign anomaly covers is as large as 
or more than 1,000 square degrees of longitude by 
latitude, the meteorological elements therein will be 
averaged by area to obtain the series of predictors. For 
a single element and a single period of time, if there is 
more than one region of significance, then one with 
the largest area of significance will be selected. As a 
result, primary factors for this study include the sea 
level height field, wind field (at 200 and 850 hPa) and 
geopotential height field (at 200, 500 and 850 hPa), 
which are presented in detail in Tables 1-6. 
 

Table 1.  Predictors for winter. 

Short forms of 
the predictors 

Areas to choose predictors 
from Correl. 
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mslp 

0 °~180 °~0 °, 60 °S~30 °N 
70 °E~180 °, 20 °S~20 °N 
160~70 °W, 35 °S~10 °Ｎ 
160~40 °W, 20 °S~40 °N 

+ 
+ 
- 
- 

uwnd200 

0~150 °E, 25 °Sv25 °N 
150 °E~60 °W, 5~25 °N 
40 °W~0 °, 15 °S~15 °N 

130 °E~120 °W, 70~55 °S 
60 °W~0 °, 70~55 °S 

+ 
+ 
+ 
- 
- 

uwnd850 

10~160 °E, 10~30 °N 
170 °E~120 °W, 15 °S~10 °N 

60~150 °E, 40~20 °S 
160 °E~40 °W, 5~20°N 

0 °~60 °W, 65~55 °S 

+ 
+ 
+ 
+ 
- 

vwnd200 
140 °E~160 °W, 0~25 °N 
160 °E~130 °W, 30~10 °S 

+ 
- 

vwnd850 
160 °E~120 °W, 40~10 °S 

130 °E~120 °W, 5 °S~20 °N 
+ 
- 

Hgt200 
0 °~180 °~0 °, 90~60 °S 

30~130 °E, 25~35 °N 
+ 
- 

Hgt500 

0 °~180 °~0 °, 90~65 °S 
70~170 °E, 10 °S~10 °N 
160v80 °W, 20~35 °N 

160 °E~130 °W, 65~40 °S 

+ 
+ 
- 
- 

Hgt850 
0 °~180 °~0 °, 90~60 °S 

80 °E~180 °, 25 °S~10 °N 
170~80 °W, 30 °S~35 °N 

+ 
+ 
- 

Table 2.  Predictors for spring. 

Short forms of 
the predictors 

Areas to choose predictors 
from Correl.

mslp 

30~110 °E, 10 °S~30 °N 
135 °E~170 °W, 20 °S~15 °N 

180 °~120 °W, 30~60°Ｎ 
70~30 °W, 10~20 °N 

+ 
+ 
- 
- 

uwnd200 
0~80 °E, 20 °S~15 °N 

160 °E~110 °W, 80~65 °S 
+ 
- 

uwnd850 

180 °~40 °W, 30 °S~10 °N 
120 °E~120 °W, 10~30 °N 

170~50 °W, 70~50 °S 
180 °~110 °W, 40~70 °N 

+ 
+ 
+ 
- 

vwnd200 
170 °E~130 °W, 5 °S~10 °N 

90 °E~160 °W, 90~80 °S 
+ 
- 

vwnd850 
80~40 °W, 90~55 °S 

170~100 °W, 90~40 °S 
170 °E~120 °W, 5 °S~10 °N 

+ 
- 
- 

Hgt200 
140 °E~130 °W, 40~60 °N 
110~60 °W, 80 °S~55 °N 

- 
+ 

Hgt500 
130~70 °W, 90~55 °S 

180 °~100 °W, 35~55 °N 
+ 
- 

Hgt850 

30~100 °E, 10 °S~25 °N 
140 °E~170 °W, 25 °S~15 °N 

180 °~120 °W, 30~55 °N 
100~50 °W, 25~35 °N 

+ 
+ 
- 
- 

Table 3.  Predictors for summer. 

Short forms of 
the predictors 

Areas to choose predictors 
from Correl.

mslp 70~150 °E, 30~40 °N - 

uwnd200 
170~60 °W, 45 °S~30 °N 

170~20 °W, 65~70 °S 
+ 
- 

uwnd850 
150~30 °W, 40~30 °S 
120~20 °W, 65~55 °S 

+ 
- 

Hgt200 180 °~110 °W, 50~30°S - 

Hgt500 170~120 °W, 55~30 °S - 

Hgt850 180 °~40 °E, 25 °S~10 °N - 

Table 4.  Predictors for autumn. 

Short forms of 
the predictors 

Areas to choose predictors 
from Correl.

mslp 
120 °E~180 °, 60~80 °N 

60~0 °W, 60~30 °S 
+ 
- 

uwnd200 

50~0 °W, 55~35 °S 
60~0 °W, 25~35 °N 

130~100 °W, 80~90 °N 
30~90 °E, 60~75 °N 

+ 
+ 
- 
- 

uwnd850 
70~170 °E, 80~90 °N 
70~0 °W, 50~30 °S 

60 °E~180 °, 45~75 °N 

+ 
+ 
- 

vwnd200 160 °E~160 °W, 70~90 °N + 

vwnd850 
80 °W~0 °, 75~90 °N 

160 °E~120 °W, 70~90 °N 
+ 
- 

Hgt200 0~170 °E, 75~90 °N + 

Hgt500 80~170 °E, 70~90 °N + 

Hgt850 
100 °E~180 °, 65~80 °N 

60 °W~0 °, 65~35 °S 
+ 
+ 

Table 5.  Predictors for April-June. 

Short forms of 
the predictors 

Areas to choose predictors 
from Correl.

mslp 170~115 °W, 35~55 °N - 

uwnd200 160 °E~120 °W, 25~30 °N 
170~100 °W, 45~60 °N 

+ 
- 

uwnd850 120 °E~120 °W, 10~30 °N 
120 °E~60 °W, 35~60 °N 

+ 
- 

Hgt200 120 °E~120 °W, 28~40 °N - 
Hgt500 130 °E~120 °W, 30~40 °N - 
Hgt850 120 °E~120 °W, 30~40 °N - 

Table 6.  Predictors for July-September. 

Short forms of 
the predictors 

Areas to choose predictors 
from Correl.

mslp 20~55 °E, 35~10 °S 
170~130 °W, 10 °S~10 °N 

+ 
- 

uwnd200 180 °~0 °, 45~35 °S 
60~20 °W, 65~55 °S 

+ 
+ 

uwnd850 130 °E~180 °, 5 °S~15 °N 
120~90 °W, 5 °S~20 °N 

+ 
+ 

vwnd200 130~100 °W, 25 °S~0 ° + 
Hgt850 180 °~80 °W, 25 °S~5 °N - 

5  RETROSPECTIVE FORECASTS AND 
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VERIFICATION 

First, the empirical orthogonal function (EOF) is 
used to decompose the precipitation from the 86 
stations by season to determine the main modes 
(which take up 70% of the total variance) that have 
been verified. Then, with the methods of OSR and 
MMGF the time series of the main modes are 
screened for optimal predictors. At last, the time series 
so obtained are regrouped with the spatial field to 
construct the forecast results for the precipitation field 
of different seasons. 

To verify whether the forecast outcomes are 
feasible, an assessment approach, which was 
formulated by a department on disasters prediction 
and mitigation at China Meteorological 
Administration, is used in the verification. The 
method is constituted on the basis of the percentage of 
accurate forecasts of anomaly signs in addition to 
weighting that varies with the level of anomalies. 
With the method, the total score for the domain of 
forecast is thus expressed as: 

0 1 1 2 2

1 1 2 2

P S 100%N P N P N
N P N P N

+ +
= ×

+ +
 

where PS is the score for prediction, N the sum of the 
meteorological stations included in the score statistics, 
N0 the sum of the stations for which the anomaly sign 
of the prediction is the same as that of the observation 
and those for which the anomaly sign of the prediction 
is different from that of the observation but the 
anomaly is only one level apart from each other, N1 
the number of stations for which both the prediction 
and observation have anomalously more or less 
precipitation, and N2 the number of stations for which 
both the prediction and observation have 
exceptionally more or less precipitation. P1 is the 
weighting coefficient used in adding scores when 

predicting successfully the anomalously more or less 
precipitation and P2 the weighting coefficient used in 
adding scores when predicting successfully the 
exceptionally more or less precipitation. Table 7 gives 
individual ranges of precipitation in tendency scoring. 

Table 7.  Classification of rain tendency in the scoring system 

Terms used in 
rain prediction 

Percentage of 
anomalies(△ R)/% 

Exceptionally 
less 

△ R≤ -50 

Anomalously 
less 

-50<△ R≤ -20 

Slightly less -20<△ R<0 
Slightly more 0≤ △ R<20 
anomalously 

more 
20≤ △ R<50 

Exceptionally 
more 

△ R≥ 50 

 
In view of the lack of ways to verify seasonal 

prediction of precipitation, this study verifies the 
result by month, the usual way of verification. 
Retrospective scores (Tables 8-12) are determined for 
every season in 2001-2008 following the expression 
above. 

It is shown in the PS scores for short-term climate 
prediction that the average score is above 60 points 
for most of the seasonal precipitation during this 
period of time in Guangdong using the OSR with CFS 
outputs (Table 8). In contrast, the method of OSR is 
slightly better than that of MMGF when it comes to 
the forecast of summer, autumn and winter 
precipitation in Guangdong. For the multi-year mean 
of retrospective forecasts of the winter and autumn 
precipitation, the latter method gives the result of 
44.61 and 57.84 respectively (Table 9).

 
Table 8.  PS scores of retrospective prediction using the OSR with CFS. 

year 
1st raining 

season 
2nd raining 

season spring summer autumn winter 
2001 59.98 76.22 68.79 98.87 47.37 48.86 
2002 96.51 82.44 69.23 58.14 77.05 86.11 
2003 60.47 73.77 92.27 96.51 65.26 93.43 
2004 94.19 92.63 57.17 98.84 22.79 12.16 
2005 88.0 60.47 51.14 61.63 81.72 99.31 
2006 87.43 62.84 78.11 90.87 69.77 97.96 
2007 83.82 91.26 79.31 70.00 95.08 12.64 
2008 28.67 71.11 74.01 15.61 60.22 45.25 
Mean 74.88 76.34 64.12 73.81 64.91 61.97 

Table 9. PS scores of retrospective prediction using the MMGF with CFS. 

year 
1st raining 

season 
2nd raining 

season spring summer autumn winter 
2001 67.44 98.24 83.72 98.34 66.48 88.37 
2002 56.98 58.62 53.49 58.14 11.63 39.53 
2003 73.26 24.57 94.90 66.28 74.85 23.79 
2004 96.55 83.15 24.86 44.19 98.42 28.99 
2005 54.65 91.86 72.09 94.19 74.16 99.30 
2006 45.35 94.19 50.00 66.28 72.09 97.97 
2007 76.44 90.86 63.22 93.02 27.91 13.14 
2008 70.93 70.93 92.71 65.91 37.14 64.02 
mean 67.70 76.56 66.88 73.29 57.84 44.61 
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Table 10. PS scores of retrospective prediction using the OSR with NCEP 

year 
1st 

raining 
season 

spring autumn winter Jun. Jul. Aug. Sept. 

2001 84.88 91.86 36.66 84.88 57.06 97.00 71.91 68.36 
2002 77.67 81.86 37.44 77.91 93.02 90.53 92.82 22.03 
2003 73.26 79.07 55.81 98.83 79.27 99.23 58.29 26.57 
2004 79.35 60.47 87.21 96.81 67.57 59.3 38.98 89.64 
2005 82.56 66.28 30.99 98.83 60.00 97.13 59.05 41.38 
2006 68.97 60.47 77.91 92.59 75.28 91.87 49.13 85.54 
2007 80.68 97.82 36.72 54.95 39.53 20.00 82.70 76.72 
2008 75.58 97.67 32.57 19.20 41.86 50.00 55.81 46.89 
mean 77.87 79.43 49.41 78.00 64.20 75.64 63.59 57.14 

 

Table 11. PS scores of retrospective prediction using the MMGF with NCEP. 

year 
1st raining 

season spring autumn winter Jun. Jul. Aug. Sept. 
2001 97.00 82.56 58.19 84.88 84.95 98.97 61.85 83.25 
2002 23.95 87.21 29.30 77.91 55.43 94.19 70.81 47.12 
2003 93.02 98.84 72.83 45.35 58.14 25.58 49.45 39.89 
2004 39.53 96.51 43.02 97.67 32.56 57.78 68.97 81.82 
2005 33.72 81.61 22.99 38.67 96.51 76.34 80.81 81.92 
2006 98.84 55.81 75.87 83.80 68.72 23.87 56.32 21.14 
2007 81.40 79.43 59.16 58.70 41.86 14.65 27.68 48.28 
2008 96.80 88.37 39.88 19.20 78.16 67.05 65.03 45.98 
mean 66.32 83.79 50.16 63.27 64.54 57.30 60.12 56.18 

 

Table 12. PS scores of rainfall prediction for different periods of time in 2009/2010. 

Optimal subsets Multivariate mean generation function Periods of time 
NCEP CFS NCEP CFS 

Winter (Dec.—subsequent Feb.） 92.5 93.2 10.3 91.9 

Spring (Mar.—May) 89.5 35.6 62.8 62.8 

1st raining season (Apr.—Jun.) 72.3 75.3 66.7 68.6 

Summer (Jun.—Aug.) — 68.9 — 82.5 

2nd raining season (Jul.—Sept.) — 56.4 — 62.2 

 
The CFS forecast of winter precipitation varies 

much in a year with the best being 99.31 and the 
worst only 12.64. What is behind the striking 
difference? Is it that the CFS is intrinsically unstable 
in the seasonal forecast? Here in this section, the years 
2004 and 2005 will be studied for their respective 
highest and lowest PS scores. The factors selected in 
the two models for retrospective forecasting are 
different (due to different thresholds of selection), 
which include the wind fields for 200 and 850 hPa as 
well as the geopotential height at 500 hPa. From the 
viewpoint of multi-year mean, or either in terms of the 
climatological state or the 850 or 200 hPa wind field, 
the CFS is able to simulate the wintertime circulation 
well (figure omitted), but it yields 
weaker-than-observation East Asian Trough, North 
American Trough, Australian High, equatorial trade 
wind zone and upper-level westerly, due to systematic 
errors. Similar situations are also shown in the 
comparisons of the CFS simulations of the 2004 and 
2005 wind fields (figure omitted). The 850-hPa wind 
in retrospective forecasting for the two years are very 
close to that of NCEP as far as the tendency is 
concerned (Fig. 4 and 5). In 2004, the Aleutian low 

and equatorial trade wind had anomalous 
enhancement while the Australian high had 
anomalous reduction, and in 2005, the Aleutian low 
and the Australian high had anomalous enhancement 
while the equatorial trade wind had anomalous 
reduction. They are all well simulated by the CFS. 
Similarly, simulations are also good of the 200-hPa 
wind field (figure omitted), like the anomalous 
enhancement of upper-level westerly. Besides, the 
CFS is consistent with the NCEP in forecasting the 
climatological state (figure omitted) and the 
wintertime circulation for 2004 (Fig. 6c) and 2005 
(Fig. 7c) but yields weaker East Asian Trough, North 
American Trough and Australian High due to 
systematic errors, with good tendency forecast though 
(Fig. 6d and 7d). Some other cases (like the 
highest-scored 2006 and second lowest-scored 2007) 
are also compared and similar results are obtained. It 
can then be concluded that the CFS is quite stable on 
the seasonal scale because it can simulate the 
anomalies of the circulation field. The discrepancies 
presented above may be caused by the differences in 
the factors selected from year to year, which result in 
different weighting coefficients. More work needs to 



150                                     Journal of Tropical Meteorology                                   Vol.20 

 
150 

be done in the future to optimize the factors to increase the forecasting accuracy.
 

 
Figure 4. Distributions of the 850-hPa anomalous wind field for the winter of 2004 with NCEP (a) and CFS (b). 

 

  

Figure 5. Same as Figure 4 but for 2005.

In addition, the time series used in the CFS for 
mode construction and fitting is for 1981 to 2000 (20 
years). Its length can be as long as 27 years when 
2008 is the year to be forecast. Generally speaking, 
the mean PS score is above 60 points for most of the 
seasonal prediction of the precipitation in Guangdong, 
suggesting that it is feasible to use the data in 
forecasting. 

To further demonstrate the feasibility of using 
CFS outputs in establishing a downscale predictive 
model for the precipitation of Guangdong, a 
traditional statistics model (derived by studying 
preceding predictors based on observations) is used. 
The NCEP data is screened for factors that are 
significantly related with precipitation from the 
temperature fields at 200, 500 and 850 hPa, the 
geopotential height fields at 200 and 500 hPa, and the 
wind fields at 200 and 850 hPa. The selection follows 
the procedure for the CFS outputs. Then retrospective 
forecasting is conducted to determine various scores 

for predicting climatological precipitation for different 
seasons in Guangdong (Tables 10 and 11). It is clear 
that the precipitation predicted with the OSR with the 
NCEP data is better than that of the CFS for the 
annually first raining season, spring and winter, 
especially the latter two seasons. Their scores for 
precipitation in Guangdong are 79.43 and 64.12 
points for spring and 78 and 61.97 points for winter, 
respectively. As no predictors from the NCEP data are 
included in the section for the precipitation in summer 
and the annually second raining season, predictors are 
sought individually for June, July, August and 
September. As shown in the results, the score for July 
is the best while that of September the worst, the 
mean PS score for June to August is not as good as 
that with the CFS and the average for July to 
September (the annually second raining season) is 
also not as high as that of the CFS. As compared to 
the three methods, the MMGF with the NCEP data is 
generally the worst in the prediction of precipitation 
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in Guangdong, with the exception of the spring and 
summer when it is better than that with CFS. It is then 
clear that the seasonal prediction models set up with 
the conventional statistics method and the CFS 

outputs are each advantageous on their own and both 
produce consistent forecasts of precipitation on the 
seasonal scale, suggesting that the CFS output works 
in predicting the precipitation of Guangdong.

 

 
Figure 6. The original fields (a, c) and anomalous fields (b, d) of the 500-hPa geopotential field for the winter of 2004 with NCEP (a, 
b) and CFS (c, d).

Table 12 presents the PS scores with the four 
methods in predicting models in making real-time 
seasonal precipitation forecasts for 2010. It shows that 
the winter result is the best in which three models (the 
CFS and NCEP with the OSR as well as the CFS with 
the MMGF) scored at more than 80 points, followed 
by the spring result in which one model (the NCEP 
with the OSR) scores over 80 points, and the raining 
season (the annually first one) result in which two 
models (the CFS and NCEP with the OSR) score over 
70 points, and the summer result in which one model 
(the CFS with the MMGF) scores more than 80 points. 
The result for the annually second raining season is 
the worst of all. Intercomparisons between individual 
models indicate that the NCEP with the OSR is the 
most stable model that yields scores of 92.5, 89.5 and 
72.3 points for the forecasts of the winter, spring and 
the annually first raining season, respectively. The 
CFS with the OSR scores the highest (93.2 points) for 
winter prediction and second highest (72.3 points) for 
the annually first raining season. The NCEP with the 

MMGF performs the worst with none of the 
predictions achieving 70 points. The CFS with the 
MMGF scores higher for the winter and summer 
prediction, 91.9 and 82.5 points, respectively. In 
summary, the NCEP with the OSR has the best 
performance while the NCEP with the MMGF 
performs worst, with the other two models varying in 
stability. 

It is known from the analysis above that the 
results from the CFS output is generally close to that 
achieved with the conventional observations, scoring 
more than 60 points on average though with large 
intra-annual fluctuations in some seasons. Besides, the 
CFS products are updated in real time, being capable 
of forecasting the precipitation of Guangdong three 
seasons ahead, while the traditional statistical method 
is not good at forecasting some of the seasons due to 
the limitation of the NCEP reanalysis in addition to 
the absence of some predictors in the forecasting 
models due to updating. It is now known that 
uncertainty exists in the precipitation forecast with the 
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statistical method such that one of them cannot be 
replaced with another all together. The downscaling 
predictive model of this present work, which is used 
to forecast the seasonal precipitation of Guangdong, 
enriches the conventional statistical method but needs 
further improvement in the stability of forecasts. If 

these four methods—set up with the CFS outputs and 
NCEP reanalysis—can be combined for perfection 
and new downscaling methods can be developed, the 
forecasting of precipitation can be made better.

 

 
Figure 7. Same as Fig. 6 but for 2005.

6 CONCLUSIONS 

The retrospective forecasting data of the CFS 
spans from 1981 to 2008 (28 years), which include 
both real-time and 9-month forecasts. Compared to 
the NCEP data, the CFS is able to simulate the 
seasonal variation of monsoon circulation, especially 
the anomalous development of sea surface 
temperature during the evolution and decay stage of 
ENSO, with a lead of a few months. Therefore, the 
CFS data can be used for forecasting precipitation in 
Guangdong.  

In this work, the CFS outputs are used to develop 
downscaling methods that are based on the OSR and 
the MMGF. Following our analysis and verification, 
mean sea level pressure, wind and geopotential height 
are selected as the concurrent predictors. 
Retrospective forecasting and verification for multiple 
years have shown that the CFS outputs with the OSR 
perform a little better than that with the MMGF in the 

forecast of the precipitation in the annually first 
raining season, summer, autumn and winter, 
especially the winter and autumn. The NCEP with the 
OSR is superior over the CFS in the forecast of 
precipitation in the annually first raining season, 
spring and winter. The retrospective forecast of 
seasonal precipitation with the CFS outputs is marked 
with intra-annual instability for some seasons. As 
shown in the analysis, it is independent of the instable 
performance of the CFS outputs but may be related to 
the difference in the predictors selected for each of the 
years of interest such that the weighting coefficient 
varies. More work is needed in this aspect. Besides, in 
the PS scores for real-time prediction of seasonal 
precipitation in 2009 and 2010, the NCEP with the 
OSR gives the best prediction while the NCEP with 
the MMGF yields the worst, with the other two 
models varying in stability. 

In general, as compared with the conventional 
way of statistical approach with the NCEP data, the 
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CFS outputs, due to real-time production and rapid 
updates, are superior such that the downscaling 
method based on them are able of forecasting the 
precipitation in Guangdong by a lead of three seasons. 
It enriches the way of conventional statistical 
forecasting but needs to be improved in the stability of 
forecasting. 
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