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Abstract: In this paper, the forecasting equations of a 2nd-order space-time differential remainder are 
deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion. Here 
we introduce a cubic spline numerical model (Spline Model for short), which is with a quasi-Lagrangian 
time-split integration scheme of fitting cubic spline/ bicubic surface to all physical variable fields in the 
atmospheric equations on spherical discrete latitude-longitude mesh. A new algorithm of “fitting cubic 
spline—time step integration—fitting cubic spline—……” is developed to determine their first- and 
2nd-order derivatives and their upstream points for time discrete integral to the governing equations in 
Spline Model. And the cubic spline function and its mathematical polarities are also discussed to understand 
the Spline Model’s mathematical foundation of numerical analysis. It is pointed out that the Spline Model 
has mathematical laws of “convergence” of the cubic spline functions contracting to the original functions 
as well as its 1st-order and 2nd-order derivatives. The “optimality” of the 2nd-order derivative of the cubic 
spline functions is optimal approximation to that of the original functions. In addition, a Hermite bicubic 
patch is equivalent to operate on a grid for a 2nd-order derivative variable field. Besides, the slopes and 
curvatures of a central difference are identified respectively, with a smoothing coefficient of 1/3, three-point 
smoothing of that of a cubic spline. Then the slopes and curvatures of a central difference are calculated 
from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline, respectively. 
Furthermore, a global simulation case of adiabatic, non-frictional and "incompressible" model atmosphere is 
shown with the quasi-Lagrangian time integration by using a global Spline Model, whose initial condition 
comes from the NCEP reanalysis data, along with quasi-uniform latitude-longitude grids and the so-called 
“shallow atmosphere” Navier-Stokes primitive equations in the spherical coordinates. The Spline Model, 
which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme, 
provides an initial ideal case of global atmospheric circulation. In addition, considering the essentially 
non-linear atmospheric motions, the Spline Model could judge reasonably well simple points of any 
smoothed variable field according to its fitting spline curvatures that must conform to its physical 
interpretation. 
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1  INTRODUCTION  

Space discretization and time integration are the 
two sides of a “coin”— dynamic core of a numerical 
model, which determines physical mechanism, 
mathematical accuracy and computational error of the 
atmospheric dynamical system. It also identifies the 
model physical conservations (such as conservation of 

mass, energy, etc.), mathematical properties and 
computational stabilities, holding the atmospheric 
movements in the model. 

In numerical analysis[1-4], cubic spline functions 
include cubic spline, bi-cubic surface and tri-cubic 
(3-D cubic) cube, while the cubic spline is the 
mathematical foundation of the other two. Nowadays, 
the bicubic surface, which was first suggested to 
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conduct aircraft design by Fergusion[5] working in 
Boeing CO. Ins, is perfectly described by computer 
graphics. 

Cubic spline function comes from Hermite 
2nd-order derivative interpolation[1]. Some 
mathematic laws of the cubic spline, bicubic surface 
and tricubic cube are as follows. 1) The cubic 
interpolation function, together with its 1st-order and 
2nd-order derivatives, contracts to the original 
function (Contraction law); 2) its 2nd-order derivative 
is an optimal approximation of the original function 
(Optimality law); and 3) there exists periodic cubic 
spline interpolation. As the Spectral Model was based 
on some similar laws, a “cubic spline model” (short 
for Spline Model) should be presented by a 2nd-order 
differentiable (C3 continuity), “convergence” and 
“optimal” model with the cubic spline functions 
fitting to non-linear variable fields in the equations of 
atmospheric motions. Thus the dynamic core of Spline 
Model may be a quasi-Lagrangian integration scheme 
fitting with all variable fields of the cubic spline 
interpolations. All of them contain 2nd-order spatial 
derivatives, i.e., their slopes, curvatures and torsions 
are stationary. And it is easier to solve over-close 
grids in the Antarctic/Arctic areas as well as the two 
poles in a global Spline Model by the bicubic surface 
interpolation. 

It is known that the slope ( im , 1st-order 

differential quotient) and curvature ( iM , 2nd-order 
differential quotient) of the equidistant ( XΔ ) central 
difference are equal to ( im , iM ) of the cubic spline, 
respectively. Both of them need a three-point 
smoothing and the smoothing coefficient is 1/3, and 
the formulas are as follows[1]: 
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The formula of iM  is the foundation of fitting cubic 
spline. It is called the “chase-after method”[1], which 
indicates that the format of cubic spline is perfectly 
consistent with that of 2nd-order central differential 
quotient. 

The quasi-Lagrangian time-split integration 
scheme with fitting of cubic spline functions is 
investigated in this work to get a global Spline Model 
of 2nd–order space-time differential remainder. Its 
calculation accuracy is higher than the Euler method 
model of central difference and quasi-Lagrangian 
method model with bilinear interpolation. 

Robert[6] and Robert et al.[7] introduced 
semi-Lagrangian and semi-implicit numerical 
integration schemes for the primitive equations to a 
multilevel model. Bates et al.[8] and Qian et al.[9] 

considered that Newton's formula of distance, velocity 

and acceleration and linear interpolation or iterative 
interpolation calculation with 2nd-level time can be 
used to calculate the path of quasi-Lagrangian 
upstream air parcel as well as many other variables, 
but special space-time discretization was necessary for 
a scalar or vector field. Purser and Leslie[10] and Noir 
et al.[11] improved a reduced-order interpolation 
method, which had a better calculation accuracy and 
computational efficiency. They applied it to an 
operational numerical model, since they believed that 
the calculation of upstream path of an air parcel with 
the traditional non-linear interpolation, like cubic 
spline, cost too much computational time. Layton[12] 
presented a new numerical method of fitting cubic 
spline to the shallow water equations (SWEs) in 
spherical coordinates. In her viewpoint, the spatial 
discretization schemes used in meteorological 
applications were limited to low-order 
finite-difference methods, while the spectral method 
with high-order approximation asked for Legendre 
transforms, which shows some computational 
complexity. In her implementation, the SWEs were 
discretized in a 3rd-time layer with the semi-implicit 
and leap-frog integral formula, whereas the cubic 
spline fitting to skipped latitude-longitude grids was 
used in space. Numerical results demonstrated the 
stability and accuracy of the new method. Gu et 
al.[13-15] successfully showed an ideal case in 
simulating the non-linear, bicubic- surface advections 
in 120-h integration with time step of 180 s by using a 
global model with a quasi-Lagrangian integration 
scheme, which is a set of global quasi-uniform 
latitude-longitude grids with the sets in high latitudes 
skipped. The NCEP re-analysis data was treated as an 
initial model atmosphere. The integration and step 
values were decided based on the following reason. (1) 
It was easy to deal with over-close meshes in high 
latitudes by fitting spline interpolations to grids 
skipped; and (2) the horizontal wind field in the 
Antarctic and Arctic poles can be expressed as the 
2nd-order derivative of the entire spherical surface in 
the z-coordinates. By using Taylor series expansion 
and time-to-space derivative transformation to the 
Eulerian operator, Gu[16, 17] deduced a docking 
derivation of 4th-order time-to-space differential 
remainder between the Eulerian scheme and the 
quasi-Lagrangian scheme, demonstrating the same 
solution of them, i.e. Eulerian track’s slope, curvature 
and torsion and quasi-Lagrangian path would have the 
same 2nd-order differential remainders with fitting 
cubic spline functions. The 4th-order differential 
remainder also can be calculated, but the number of 
computation increased exponentially for fitting 
enormous splines. 

2  FORECAST EQUATIONS OF 2ND-ORDER 
SPACE-TIME DIFFERENTIAL 
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REMAINDER 

2.1  Navier-Stokes primitive equations 

On the spherical z-coordinates, the adiabatic and 
non-topography “shallow atmosphere” Navier-Stokes 
primitive equations are as follows: 
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in which t stands for the time, 0a is the average 
radius of the earth, λ  and φ  are the longitude and 

latitude, )( 0 zar +=  is the distance between the 
air parcel and the geocentric point, respectively. Here 

ϕδλδ cos0 ⋅= ax ， δϕδ ⋅= 0ay ， zr δδ = , 

ϕsin2Ω=f  and  ϕcos2~
Ω=f . While Ω , 

),,( wvu FFF , g  is for the angular earth rotation 

velocity, the frictions, and the gravitational 
acceleration, respectively. Let pR/C=κ  

and (1 0.618 )dR R q= + in which, dR , R and Cp are 
dry, wet specific air constant, and wet air specific heat 

at constant pressure, respectively. p , T , q , 
),,( wvu  is pressure, temperature, specific humidity, 

and wind speeds in order. 
Then, all of the forecasting equations (1) - (6) can 

be written in a general formula (P stands for p , T , 
q , u , v , w ): 

d
d
P a
t

=                 (7) 

in which a stands for the forcing item of a generalized 
acceleration for every forecasting equation. For the 

),,( wvu  equations, a is the generalized Newtonian 
force acting on unit air mass on the rotating Earth, 
noted as ),,( wvu aaa  correspondingly from now on. 

For the ),( Tp  equations, it is the acting items of 
three-dimensional divergence. For the q  equation, it 
stands for the vapor variability of source/sink, which 
could be zero in dry adiabatic. 

2.2  General forecast equation of 2nd-order space- 
time differential remainder 

It is known that truth-seeking solution of the 
Euler operator is 
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Thus, the general formula for P of the forecasting 

equations (1) - (6) becomes 
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The tΔ  Taylor series expansion of the forecast 
variable ),,,( zyxttP Δ+  is derived as:
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in which nR  is tn 1+Δ -order differential remainder 
of magnitude. It is commonly used to replace 

)( tO nΔ  in meteorology. 
With N-order (N>4) time-to-space derivatives of 

Eq. (8) for the Euler operator of P , the time partial 
derivatives of P  in Eq. (9) could be converted to the 
sum of space partial derivatives, the acceleration 
terms of P  and their derivatives. When omitting all 
the above 3rd-order partial derivatives of P , 
however, all partial derivatives of wind velocity 

),,( wvu  and acceleration ),,( wvu aaa , the general 
forecast equation of 2nd-order space-time differential 
remainder is expressed as follows: 
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For Eq. (10), ),,,(ˆ zzyyxxtP Δ−Δ−Δ−  is 

obviously the approximation of ),,( 222 zyxO ΔΔΔ - 
order differential remainder of magnitude for the 3-D 
upstream point ),,,( zzyyxxtP Δ−Δ−Δ− . Eq. 
(10) shows that if the quasi-Lagrangian air parcel does 
not exchange with the outside environment ( 0=a ), 
its forecast value at the Euler point will be equal to 
the value of an upstream point. However, the 3-D 
displacement field of all the upstream points should 
be non-linear paths through each variable field, while 
they are just 3-D “cubic spline” paths in Eq. (10). 

2.3  Equations of 2nd-order space-time differential 
remainder with cubic spline functions 

It is assumed that the atmospheric motion variable 
fields (P) are all 2nd-order derivatives, and their 
fitting slopes, curvatures and twists can be obtained 
by the cubic spline interpolations. In Eq. (10), there 
could be some approximate values: 
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Thus Eq. (10) becomes 
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However, for reducing the huge calculation of 
fitting cubic spline, a “scale analysis” method can be 
adopted to simplify the problem. Because the 
large-scale horizontal motion is much greater than the 
vertical motion, as zx Δ>>Δ , and y zΔ >> Δ . 

Thus the smaller items in Eq. (12) containing xzP  
and yzP  are omitted, and Eq. (12) becomes 
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In Eq. (13), ),,,( zyyxxtP Δ−Δ−&  is the 

approximation of ),( 22 yxO ΔΔ -order differential 
remainder in magnitude of the 2-D upstream point 

),,,( zyyxxtP Δ−Δ− . As a result,  P&  can be 
achieved by fitting bicubic surface instead of fitting 
tricubic cube to get P̂ . 

According to Eqs. (12) and (13), we have 
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2
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the discrete forecast equations, including the 
2nd-order space-time differential remainder 
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3  HERMITE BICUBIC PATCH AND COONS 
BICUBIC SURFACE   

In numerical analysis, a patch is the simplest 
mathematical element of fitting curved surface. Set a 
patch as )(PΠ , in which P stands for p, T, q, u, v, w, 
etc.. On a spherical latitude-longitude mesh, let x 
( ]1,0[∈x ), y ( ]1,0[∈y ) be two independent 
parameters defined on the latitudinal and meridional 
directions, respectively. They will make all of the 
global latitude-longitude meshes become topological 
rectangular. Then the Hermite bicubic patch is 
perfectly determined by a matrix of 16 independent 
vectors: 
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In Eq. (20) the subscript of each P stands for the 
position in its 4 vertices, while the superscript is for 
the partial derivative of x and/or y. In the matrix P, the 
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4 upper-left vectors are known, and we can deduce 
that the 4 upper-right and 4 lower-left are 1st-order 
derivatives (slopes), i.e., xxP00 , xxP01 , xxP10 , xxP11 , 

yyP00 , yyP01 , yyP10 , and yyP11  , corresponding to the 8 
2nd-order derivatives (curvatures) derived by fitting 
cubic spline on the set of parameterized x or y nodes 
in the P field. The former and the latter 8 values 
depend on each other. The 4 lower-right 2nd-order 

partial derivatives (twists, xyP / yxP ) are gained by 
fitting the spline of known xP / yP  on the 
parameterized y/x, xyP = yxP . 

The algebraic expression of a parameterized 
bicubic patch, when projected on a topological 
rectangular mesh ( ]1,0[∈x , ]1,0[∈y ), is

3 3 3 2 2 3 3 3 3 3
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Eq. (21) is equivalent to the matrix Π  of a 

Hermite bicubic patch in Eq. (20). Substitute Eq. (21) 
with 16 known independent vectors (4 values and 12 
partial derivatives) in matrix Π , we will obtain a 
series of 16 linear equations. Therefore, the 16 
algebraic coefficients can be estimated in Eq. (21). 

According to the continuity requirements of 
fitting a bicubic curved surface, a Coons[2] bicubic 
surface over a limited area or all of the Earth in 
spherical coordinates is 2nd-order differentiable, i.e., 
C2 continuity at any (x or y) directions. The Coons 
bicubic surface can be formed by a lot of analogous 
Hermite bicubic patches on the global 
latitude-longitude meshes, ①slope and ②curvature  
are two boundary conditions for a cubic spline and a 
bicubic surface in some limited area:. For instance, 
the forward/backward differential could be used to get 
the slope at the two ends of cubic spline. 

4 QUASI-LAGRANGIAN TIME-SPLIT 
INTEGRATION SCHEME 

Eq. (13) indicates that a global Spline Model can 
make one appropriate time step integration for the 
model atmosphere 2nd-order differentiable on the 
topological rectangular grid with spherical 
latitude-longitude by fitting bicubic surface in 
horizontal and cubic spline to each field of p, T, q, 

),,( wvu  and ),,( wvu aaa  in the vertical. 

4.1  Navier-Stokes primitive equations 

The main feature of quasi-Lagrangian time 
integration of the global Spline Model is that it is only 
needed to calculate a level upstream point and its 
value in a patch ( Π ) on one of the four topological 
rectangles adjacent to a forecast point. According to 
Newton’s relation of distance, speed and acceleration, 
we have an upstream point for its horizontal 
displacements L ),( yx ΔΔ : 

)
2

,
2

(),( 22 t
a

tvt
a

tuyx vu Δ+ΔΔ+Δ−=ΔΔ . In order 

to obtain L more accurately, tΔ  is further divided 
into N time slices to make the air parcel path closer to 

the real wind track. Meanwhile, the computational 
stability criterion of Courant-Friedrichs-Levy (CFL) 
must be satisfied. Otherwise the upstream point along 
the streamline L would locate at some other patches 
out of the four bicubic patches. Its quadrant and 
location are determined by its positive/negative sign 
and size when editing codes, so that we can get the air 
parcel’s predicted value on the patch ( Π ) with the 
known stationary slope, curvature and torsion. In the 
same way, we obtain the vertical displacement zΔ  
of the upstream point and all of its predicted variable 
values, zPzPP ⋅Δ−≈ &ˆ , in the global Spline Model 
by fitting cubic spline to every column’s variable field 
(P) in the vertical. 

4.2  Calculating three-dimensional divergence and 
time-split integration 

For seeking a global three-dimensional 
displacement field of all the cubic-motion upstream 
points, it is necessary to forecast the transportation of 
atmospheric quality and energy of the “horizontal 
advection on bicubic surface + vertical convection in 
cubic spline”. The "implicit" three-dimensional 
divergence field of the upstream points should also be 
obtained at the same time ( tΔ ). 

Let I, J, K be the number of forecast points in 
),,( zyx  directions, respectively. For the 3-D 

displace field, there is ),,( kji)kj,i,( zyxS ΔΔΔ=  in 

one step tΔ , in which I,......,2,1,0i = , 
J,......,2,1,0j = , K,......,2,1,0k = . Actually, cubic 

spline could be fitted to them in each direction (take 
forward/ backward difference in spline bounds of the 
top and bottom), to strike all of their slopes, i.e. 

),,( k)j,i,()kj,i,()kj,i,(
zyx SSS  . In the “implicit” time, the 

average 3-D divergence field is: 
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The horizontal displacements of air parcel are 
mostly attributed from a resultant force, i.e. ),( vu aa , 
of the horizontal pressure gradient force and Coriolis 
force. Its vertical displacement is primarily due to 
vertical pressure gradient force and the Earth's 
gravitational force )( wa . As a result, we should take 
a long time step )( tΔ  to find the horizontal path and 
a short time step to find the vertical path to get the air 
parcel’s 3-D tracks. We can also further divide the 
time step ( tΔ ) into M time slices ( tδ ), i.e. 

Mt tδΔ = , ( tδ is related to the Brunt-Vaisala 
frequency of gravity wave). ),( ji yx ΔΔ  can be 

obtained by  tΔ  while )( kzΔ  can be obtained by 
tδ (so called “time-split ”). Then Eq. (22) is easily 

transformed to: 
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Furthermore, it is not difficult to change the 
pressure and temperature forecast equations (14) - (15) 
correspondingly with Vt

v
⋅∇δ . 

Under the condition of hydrostatic equilibrium, 
we can fit cubic spline to the static equation in each 
column and perform spatial integral at every moment 
of tt δm+  ( 1,2,...Mm = ). From the results, all 

the cubic motion k),
M

,
M

( zyx δΔΔ

 
and the vertical 

displacement )( kzδ  of an air parcel in every 
“time-split” tδ  can be achieved, as well as the static, 
geopotential height differences at each layer with 
respect to their z-coordinates.. The ttzS δ+)(  can also 
be obtained by fitting spline to the kzδ . In theory, an 

iterative method must be used to find the height 
differences kzδ  as well as its ttzS δ+)(  and to get 

the predicted values of the ttp δ+  and ttT δ+  at the 
same time until any vertical height difference )( Kzδ  
in top of the column stops changing. 

Obviously, one can take the “time-split” 
integration to reduce the computation load 
significantly via fitting bicubic surface to a horizontal 
variable field. 

5 AN IDEAL SIMULATION CASE 

The global Spline Model is characterized by[14, 15] 
z-coordinates, non-terrain, quasi-uniform 
latitude-longitude grid and 18-layer vertical 
geopotential height. The Navier-Stokes primitive 
equations of shallow atmosphere are applied to 
describe an adiabatic, frictionless and incompressible 
model atmosphere. Meanwhile the quasi-Lagrangian 
time integration is adopted. An ideal case is simulated 
by using the NCEP reanalysis data as initial value 
fields. The time is set at 00:00 (UTC, see Fig. 1) on 
January 10, 2008. 

The simulation case is 120 hours of integration 
with time step of 120 s. A nine-point smoothing with 
a coefficient of 1/3 is conducted on the entire pressure 
and temperature fields once every 6 hours in the 
integration but on the entire level of wind field on 
every time step. The simulation results (Figs. 2 to 6) 
show that the cubic-motion advections can simulate 
both the general circulations and the atmospheric 
longwave (i.e. Rossby Wave) activities of “trough” 
and “ridge” in the global Spline Model.

 



394                                     Journal of Tropical Meteorology                                  Vol.19 

 
394 

 
Figure 1. Initial geopotential height (dagpm, real line) at 500 hPa at 00:00 January 10, 2008. 

 
Figure 2. Same as Fig.1, but for 24-h forecast geopotential height (dagpm, real line) at 500 hPa. 

 

 
Figure 3. Same as Fig.1, but for 48-h forecast geopotential height (dagpm, real line) at 500 hPa. 
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Figure 4. Same as Fig.1, but for 72-h forecast geopotential height (dagpm, real line) at 500 hPa. 

 
Figure 5. Same as Fig.1, but for 96-h forecast geopotential height (dagpm, real line) at 500 hPa. 

 
Figure 6. same as Fig.1, but for 120-h forecasted geopotential height (dagpm, real line) at 500 hPa.

6 SMOOTHING FOR ATMOSPHERIC 
NON-LINEAR MOTIONS 

According to the description of original equations, 
the essential part of atmosphere motions is non-linear 
movement, which is neither “linear” nor “cubic”. 

Considering the occurrence of a lot of unstable 
disturbances on different scales, the interpretation of 
the cubic movement should be more accurate than the 
linear one. If no smoothing was conducted in the 
integration of the above simulation, there are a lot of 
discontinuities (called "cusp" or "surround") of fitting 
cubic splines to the pressure and temperature fields, 
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especially to the wind field. 
Smoothing global fields for all the variables must 

distort the model atmospheric movements. Therefore, 
the smoothed local area or simple point should reflect 
the real atmospheric movement. Since every time 
before integration, the determinate curvatures of 
fitting spline to each variable field can be obtained in 
advance. We may judge the curvatures for smoothing 
the unreasonable areas or points conforming to 
physical interpretation, such as mass conservation for 
pressure smoothing, energy conservation for 
temperature smoothing, and momentum conservation 
for wind smoothing. It is also easier to induce a new 
2nd-order derivative bicubic "patch" to the smoothed 
domain with the Hermite interpolations. If the 
unstable area was the original place of some synoptic 
systems (such as a typhoon), however, a nested Spline 
Model with high resolution would be built in the 
global model for avoiding smoothing. 

7 CONCLUSIONS AND DISCUSSIONS 

(1) Cubic spline function (spline, bicubic surface 
and tricubic cube) is featured by the following 
properties. (a) Contraction law: this spline can 
converge its 1st-order and 2nd-order with derivatives 
contracted to the original function. (b) Optimality law: 
its 2nd-order derivative is optimally approximate to 
the original function. Thus the cubic spline model is 
the “optimum” numerical model with 2nd-order 
differentiable spatial interpolation. 

(2) Hermite bicubic patch is a 2nd-order 
derivative variable field equivalent to perform 
operation on the mesh. The Coons bicubic curved 
surface has the 2nd-order differentiable 
“convergence” and “optimality” with its slopes, 
curvatures and twists for fitting a variable field. 
Besides, it has spatial calculation accuracy of 
2nd-order differential remainder. The dynamic core of 
global cubic spline model is the quasi-Lagrangian 
time-split integration scheme with fitting cubic spline 
functions for variable fields. The scheme calculates 
the upstream air parcel, which can be on a global 
quasi-uniform, latitude-longitude, topological 
rectangular grid including both polar areas and two 
poles. 

(3) The simulating results of dynamic core of 
global Spline Model indicates that the model is 
suitable for the Navier-Stokes primitive equations to 
preliminarily describe the general circulation and 
longwave "trough" and "ridge" activities on many 

Coons bicubic surfaces in terms of the variable fields 
in the spherical coordinates. 

(4) Since the slope and curvature of central 
difference is derived from cubic spline with a 
three-point smooth whose smoothing coefficient is 1/3, 
the central difference approximation always reduces 
the wave amplitude and slows down its phase velocity 
in model atmosphere. 

(5) In theory, the dynamic core of global Spline 
Model can be determined by the curvatures of fitting 
spline to some variable fields. Besides, their 
curvatures should be judged by smoothing some areas 
or points to keep the model stable at every time step 
of the integration 
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