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1  INTRODUCTION  

Accurate and reliable oceanic observational data 
are very important for marine research and 
ocean-atmosphere numerical forecast. However, the 
most difficult obstacle nowadays is the lack of 
oceanic environmental data and the lack of data 
analysis and information extraction technique. 

ARGO (Array for Real-time Geostrophic 
Oceanography) is a global oceanic observation and 
investigation project proposed and supported by the 
United States, Great Britain, France, Japan, China, 
and other countries. The goal of the ARGO project is 
to establish a global real-time observational network 
which consists of about 3000 automation floats and 
can quickly and accurately collect the global 
temperature and salinity profiling data and their 
characteristics. The global ARGO observational 
network can provide more than 10,000 temperature 
and salinity real-time observational profiles monthly. 
The ARGO data has such advantages as vast spatial 
range, long duration and sufficient observational 
factors and supports whole weather detection, which 
can efficiently make up for the shortage of the oceanic 
environment data, especially the observations in the 
deep layers[1]. 

However, there are some inherent limitations in 

the ARGO data: the average array interval of ARGO 
floats was about 300 km, and there is only one profile 
about every 10 days for each ARGO float. For 
regional oceanic and atmospheric research, the ARGO 
data is sparse in space and discrete in time. For partial 
key sea areas, such as the South China Sea and the 
northwest Pacific, the temporal-spatial resolution of 
ARGO data is far from enough. Considering the 
factors of floats shift and the difference of measuring 
periods and regional distribution, the available ARGO 
data are even rare[2]. 

Interpolation algorithms are common techniques 
for estimating and approaching the missing 
information with nearby data. The current 
interpolation algorithms contain the Newton method, 
Lagrange method, spline interpolation, polynomial 
interpolation, finite element method, weighing 
function method, variational method, spectrum 
method, successive correction method, optimal 
interpolation and so on[3, 4], which can basically meet 
the needs of the interpolation and fitting of large-scale 
atmospheric and oceanic data. 

However, a key premise involved is that the 
above interpolated techniques need to be provided 
with sufficient data and related information. If the 
observational data is too rare, the precision and 
reliability of the interpolation algorithm will be 
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restricted greatly. There is universal scattered and 
sparse observational data such as ARGO data in the 
oceanic environment, but the general interpolation 
techniques have serious limitations in dealing with 
such type of data[5]. From the analysis above, it has 
important scientific meaning and practical value to 
develop new interpolation techniques to address the 
issue of sparse observation data. Ellipse interpolation 
algorithm model—a new interpolation technique for 
dealing with sparse data based on the information 
diffusion principle—was proposed in this paper. 

2  THE PRINCIPLE OF INFORMATION 
DIFFUSION INTERPOLATION 

2.1  The Principle of information diffusion  

The technique of information diffusion is a 
concept of research and a mathematic model put 
forward for solving the imperfect information existing 
in evaluating strong natural disasters, such as 
earthquake, storm surge, mudslides, and etc[6], which 
are characterized by high degree of severity and small 
samples. Information diffusion is a fuzzy mathematic 
method by optimizing the fuzzy information of 
samples in order to make up for the missing 
information and can effectively deal with the 
imperfect sample information by transforming single 
samples into fuzzy-set samples in the form of 
probability[7]. Now, the information diffusion 
technique is only used for the risk assessment of the 
small-sample events[8-10], and its idea is suitable for 
solving the imperfect data such as sparse data 
interpolation. 

Suppose that { }1 2 nW W W W= L is the 

knowledge sample series, L  the underlying domain, 
and the observational value of iW  is il . Let 

( )ix l lφ= − , then if W is imperfect, there is a 

function ( )xμ   which can make the il  point 

information (value-1) diffuse into l  with ( )xμ . 
The diffused information distribution pattern 

( ) ( ) ( )( )
1 1

n n

i
j j

Q l x l lμ μ φ
= =

= = −∑ ∑ can better 

describe the whole structure of W , which is called 
the information diffusion principle[6]. 

Matrix probability density function estimation 
through the information diffusion principle is called 
diffusion estimation. The exact definition of the 
diffusion estimation is defined as follows. If ( )xμ  
is defined on a Borel measurable function 

in ( ),−∞ +∞ , 0d > is a constant, il lx
d
−

= , then 

( )
1

1ˆ
n

i

ii

l lf l
nd d

μ
=

−⎡ ⎤= ⎢ ⎥⎣ ⎦
∑           (1) 

is the diffusion estimation of the matrix probability 
density function ( )f l  where ( )xμ is the diffusion 

function and d  is the window width. 

2.2  The idea of information diffusion 

In this paper, the idea of information diffusion is 
introduced into the fitting and interpolation of sparse 
data and a new interpolation technique—algorithm for 
information diffusion and interpolation, which is 
suitable for sparse data and small samples, is 
proposed. 

2.2.1 FUZZY MAPPING RELATIONSHIP BETWEEN INPUT 
AND OUTPUT 

For an input-output system, Ω  is denoted as the 
matrix, x  as the input variable, y  as the output 
variable, X  as the input set, and Y  as the output 
set, viz. x X∈ ， y Y∈ ， X YΩ = × . 

Let ( , )f x y  be the probability density function 
of matrix Ω , then the density of condition 
probability of y  is described as follows with 
x u= . 

| ( | ) ( , ) ( , )Y X
v Y

f y u f u y f u v dv
∈

= ∫ .    (2) 

Based on the fuzzy-set idea, the Ω  input-output 
system is defined to be an output fuzzy set B%  under 
a given input, the membership function of fuzzy set 
B%  is corresponding to the probability density 
function of output, and the normalized results of the 
probability density function are a membership 
function, i.e., the membership function of fuzzy set 
B%  is described as follows,

{ }

( , ) ( , )
( , )( )

max ( , )
max ( , ) ( , )

v Y
B

y Y
y Y

v Y

f u y f u v dv
f u yy

f u y
f u y f u v dv

μ ∈

∈
∈

∈

= =
⎧ ⎫
⎨ ⎬
⎩ ⎭

∫

∫
% .(3) 

 
 

Therefore, in the input-output system, for any given input x ( x X∈ ), its whole potential output 
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can be denoted by the fuzzy set B% , which is the 
fuzzy mapping relationship between input and output. 

Generally, the probability density function 
( , )f x y  of the matrix Ω  is hardly acquired at hand 

but currently estimated by mass statistics of samples. 
Under the condition of rare data information, it will 
still be given an approximated estimation of the 
distribution of whole probability density by the 
information diffusion based on a few sample data 
obtained. 

2.2.2 ESTIMATION OF INFORMATION DIFFUSION FUNCTION 

S  is a set of small sample series for a 
constructed Ω  input/output system, denoted as 

{ }1 1 2 2( , ), ( , ), ( , )n nS x y x y x y= L . 
For the lack of samples, the probability density 

function is often hardly constructed by current 
common statistical analysis methods. 

In the principle of information diffusion, small 
samples series S  can be regarded as the information 
points scattering in the input/output phase space 
X Y× . By point-set mapping, each sample data can 

be diffused as a fuzzy set with points of multiple 
samples. Because of the unclear, blur and flexible 
surrounding borderline, the information collectivity 
provided by each sample is a fuzzy information set. 
Addressing the unclear and blur borderline 
surrounding the sample point ( , )i ix y , a controlling 
point is introduced in the input space X and output 
space Y  respectively, ju ( 1,2,j s= L ) and 

kv ( 1, 2,k t= L ), which are normalized discrete 
information points in the input/output space. The sets 
for the input and output controlling points are 
separately marked as follows, 

{ }1 2, , sU u u u= L ， { }1 2, , tV v v v= L . 

Thus, the space of controlling points, U V× , is 
structured in gridded distribution in the input-output 
space. Through a point of information infusion, 
information is reasonably and efficiently diffused into 
the whole space of controlling points by a suitable 
form (of information diffusion formula) to effectively 
capture and exploit the imperfect sample information. 

Denote A U V= Ω× × , define a mapping 
: [0,1]Aμ →  for an argument field A  to domain 

[0, 1], so that  
( ) ( )( , ), , , [0,1]

j ku v i ix y u v A x yμ∈ → ∈  

where ( , )x y ∈Ω , u U∈ , v V∈ , 1, 2,j s= L ,

1, 2,k t= L , 1, 2,i n= L ， and ( ),
j ku v i ix yμ is 

called the information diffusion function. 

Let ( )
1

,
j k j k

n

u v u v i i
i

q x yμ
=

= ∑ , marked as jkq , 

1 1

s t

jk
j k

t q
= =

= ∑∑ . By information diffusion, the 

estimation of probability density function at point 
( , )j ku v in the Ω  input-output system can be 
denoted as  

ˆ ( , ) jk
j k

q
f u v

t
= .            (4) 

2.2.3 MAPPING INTERPOLATION WITH INFORMATION 
DIFFUSION  

Substitute the information diffusion estimation 
ˆ ( , )j kf u v of the probability density function into the 

input-output mapping relationship formula (3). When 
the input is u , the output is as follows: 

{ }
ˆ ( , )( ) ˆmax ( , )B

y Y y Y
y Y

f u yB y y y
f u y

μ
∈ ∈

∈

= =∫ ∫%
% .(5) 

(Note that the “ ∫ ” here is not the integration 
symbol and “/” is not for operation of division, but a 
basic fuzzy-set symbol) 

Thus, based on the information diffusion principle, 
sparse sample data and limited sample information 
available, a fuzzy mapping relationship is established 
between the input and the output to determine 
interpolation results through de-fuzzy operation from 
the output. 

2.3  Algorithm of 2-D information diffusion 
interpolation  

There are many interpolation methods but current 
interpolation algorithms can hardly achieve the 
expected effect when the data sample is sparse or rare. 
For 2-dimensional data field interpolation, if the 
longitude and latitude information are regarded as the 
input and the variable values as the output, the 
two-dimensional data field can be achieved by the 
technique of information diffusion interpolation. 

The main idea of the information diffusion is as 
follows. For an imperfect data sample, it can obtain 
more information of the sample by using a suitable 
diffusion function ( )xμ . For the information 
diffusion interpolation of sparse data, its goal is to 
seek an objective, accurate and efficient diffusion 
function and to achieve a reasonable diffusion and 
optimized approach for imperfect sparse data sample. 
In mathematic principle, the goal of the above 
information diffusion interpolation technique is to 
solve the small sample problem of the imperfect data, 
which is the chief difference from other interpolation 
methods. 
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Detailed operational steps are described as 
follows. 

Let sparse sample series 

1 1 1 2 2 2[( , , ), ( , , ), , ( , , )]n n nS x y v x y v x y v= L  and 
interpolate gridded coordinate: 

1 2[ , , , ]sX X X X= L ， 1 2[ , , , ]tY Y Y Y= L ，which 
are also known as controlling points of the input 
factor. Set a controlling point for the input sample 

1 2[ , , , ]rV V V V= L  and then the interpolated field 
can be expressed as

{ },

ˆ (( , ), )
( ) ( ( ) ) ˆmax (( , ), )

i j
i j B

v V v V i jv V

f X Y v
F R B R v v R v

f X Y v
μ

∈ ∈
∈

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟
⎝ ⎠

∫ ∫%
%               (6)

where ,ˆ (( , ), ) ij k
i j k

q
f X Y V

t
= , ,

1 1 1

s t r

ij k
i j k

t q
= = =

= ∑∑∑ , 

( ), ,
1

, ,
i j k

n

ij k X Y V l l l
l

q x y vμ
=

= ∑ ( 1,2, ,i s= L ，

1,2, ,j t= L )， R  denotes the de-fuzzy operation，

and ( ), , ,
i j kX Y V l l lx y vμ is the diffusion function. 

3  INFORMATION DIFFUSION 
INTERPOLATION MODEL  

3.1  Symmetrical information diffusion function— 
normal interpolation model   

The key of information diffusion is to construct 
an exact and reasonable diffusion function. Huang[6]  
deduced a simple but practical diffusion function by 
simulating the molecule diffusion. 

2

2

( )

21( )
2

j i

j

u x

h
u ix e

h
μ

π

−
−

=          (7) 

which is called the normal information diffusion 
function, where ix  is the sample point, ju  the 
controlling point, and h diffusion coefficient. Based 

on an “average space model” and “two-point handy 
principle”, a simple calculation formula of the 
diffusion coefficient can be deduced as follows. 

0.8146( ), 5
0.5690( ), 6
0.4560( ), 7
0.3860( ), 8
0.3362( ), 9
0.2986( ), 10
2.6851( ) / ( 1), 11

b a n
b a n
b a n

h b a n
b a n
b a n
b a n n

− =⎧
⎪ − =⎪
⎪ − =
⎪= − =⎨
⎪ − =⎪

− =⎪
⎪ − − ≥⎩

   (8) 

where 
1
max{ }ii n

b x
≤ ≤

= ，
1
min{ }ii n

a x
≤ ≤

= ， n  is the 

sample amount, and the diffusion coefficient is related 
with the amount and the maximum /minimum of the 
sample. 

In 2-D information diffusion interpolation of 
sparse data, a 3-D (2-D input and 1-D output) 
diffusion function is needed and the 3-D normal 
information diffusion function is as follows.

( )
22 2

, 2 2 23

( )( ) ( )1, , exp[ ]
2 2 2( 2 )i j k

j li l k l
X Y V l l l

x y vx y v

Y yX x V vx y v
h h hh h h

μ
π

−− −
= − − − .          (9)

The normal information diffusion function shows 
that the information diffuses and weakens 
symmetrically with space around the data point. Take 
a 2-D normal information diffusion for example. Its 
function is 

2 2

2 2

1 exp( )
2 2 2x y x y

x y
h h h h

μ
π

Δ Δ
= − −       (10) 

where xh  and yh  are diffusion coefficients. 

Make 
2 x

xx
h

Δ′ = ，
2 y

yy
h

Δ′ = . It means that 

the removal of the influence of the dimension and unit 
will then transform the 2-D normal information 
diffusion function as follows. 

2 21 exp[ ( )]
2 x y

x y
h h

μ
π

′ ′= − + .     (11) 

The exponential part –( 2 2 2' 'x y r+ = ) shows 
that the information of sample points diffuses 
symmetrically along all directions after the removal of 
the influence of the dimension and unit in the 2-D 
data field, and the 3-D diffusion function is also the 
same. Therefore, the normal information diffusion is 
homogeneous and symmetrical. 

As the actual data samples (such as the 
atmospheric and oceanic observational data) often 
have complicated structures and asymmetric 
characteristics, the normal diffusion model is only 
suitable for the ideal condition and the asymmetric 
information diffusion model of approaching to the 
factual condition must be taken into account to 
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objectively describe and express the generalized, 
abnormal and asymmetric real data sample structure. 

3.2  Asymmetric information diffusion—ellipse 
algorithm model   

To overcome the shortcomings of the normal 
information diffusion model, a new ellipse algorithm 
model based on the asymmetric information diffusion 
is proposed. The data point’s information often 
diffuses and extends not in a round symmetrical form 
but in an ellipse asymmetric form. That is, in some 
directions, the information diffuses quickly, which is 
defined as the ellipse long axis, while in other 
directions it diffuses slowly (defined as the ellipse 
short axis). Thus, a “round” symmetrical normal 
information diffusion model can be developed into an 
“ellipse” asymmetric information diffusion model, 
shown in Figure 1. 

 
Figure 1. Sketches for normal (solid line, round) and 
asymmetric (dashed line, ellipse) information diffusion. 

3.2.1 2-D “ELLIPSE” DIFFUSION FUNCTION 

In the 2-D data structure shown in Figure 1, if the 
direction of fast diffusion is corresponding with the 
ellipse long axis (line a) and the direction of slow 
diffusion is corresponding with the ellipse short axis 
(line b), the information diffusion function can be 
transformed as follows:

2 2
2

1 1 1exp{ [ ( ) ( ) ]}
2 1 2 2 2 2x y x y x y

x y x yk k
h h k h h h h

μ
π λ

= − + + −
+

           (12)

where k  is the slope rate of the ellipse long axis, 
called rotation coefficient, λ  the rate square of the 
ellipse long axis, called a flex coefficient, and the 
function is called the ellipse asymmetric information 
diffusing function. 

3.2.2 k AND λ PARAMETERS  

In the 2-D ellipse asymmetric information 
diffusing function, two important parameters are 
introduced, i.e., rotation coefficient k  and flex 
coefficient λ . k  is the slope rate of the ellipse long 
axis, which is related with the xOy  plane 

distribution of the sample and the sample information 
diffuses more quickly along the direction of the 
ellipse long axis. Thus the probability of the sample 
point around the long axis is the largest and the sum 
of the square distance from each sample point 
( , )i ix y  to line 0y kx b= +  can be regarded as 
minimum, viz. 

2
2 0

2
1 1

( ) min
1

n n
i i

i
i i

kx b yQ d
k= =

+ −
= = =

+∑ ∑ .  (13) 

Thus,

0
2

10

2 2
0 0

1
2 2

2( ) 0
1

2( )( 1) 2 ( )
0

( 1)

n
i i

i

n

i i i i
i

kx b yQ
b k

kx b y k k kx b y
Q
k k

=

=

+ −∂⎧
= =⎪∂ +⎪⎪

⎨ ⎡ ⎤+ − + − + −⎪ ⎣ ⎦∂⎪ = =
∂ +⎪⎩

∑

∑
.                (14)

And it can be simplified into 

0
1 1

2 2 2

1 ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) 0

n n

i i
i i

i i i i i i

b y k x
n

k x y k x y x y
= =

⎧
= −⎪

⎨
⎪ ⋅ + ⋅ − − =⎩

∑ ∑

∑ ∑ ∑
(15) 

where 
1ˆi i ix x x
n

= − ∑ ，
1ˆi i iy y y
n

= − ∑ , and 

0b  and k  can be solved. 
The flex coefficient λ  denotes the fat/thin 

degree of the ellipse, which can be expressed as the 
rate of the average (or maximum) distance from each 

of the sample points to the short axis (line b) and to 
the long axis (line a), as shown in Figure 1. 

3.2.3 MULTI-DIMENSIONAL ELLIPSE DIFFUSION FUNCTION 

The non-dimensional form of the 
multi-dimensional (m+1–D) normal information 
diffusing function is presented as follows. 

( )
2 2

1
12

1

1 exp
2

i

m

imm
i

y x
i

x y
h h

μ
π

+
=

=

⎡ ⎤⎛ ⎞′ ′= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑

∏
.  (16) 

By introducing the flex coefficient, the“round”
normal symmetrical information diffusing function 

0y kx b= +
y

xO

a
b 
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can be developed as a “ellipse” asymmetric 
information diffusing function. 

( )

2
2

1
12

1

1 exp
2

i

m
i

mm
i i

y x
i

x y
h h

μ
λπ

+
=

=

⎡ ⎤⎛ ⎞′
′= − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑

∏
.(17) 

The rotation factor (rotation coefficient) in the 
asymmetric information diffusing function 

2
2

1

m
i

i i

x y
λ=

′
′− −∑  is introduced to make the direction of 

fast/slow diffusion corresponding with the long/short 
axis of the projection plane. Then, the coordinate of 

( 1 )ix i m′ = L  is transformed in the following steps: 

cos sin
sin cos

i i i i

i i i

x x y
y x y

θ θ
θ θ

′ ′ ′= +⎧
⎨ ′ ′ ′= − +⎩

.       (18) 

Then, 

( )

1

1
1 1 12

1
1

2 2

11 1 1

1 1exp{ [ cos ( sin sin cos )
2

sin cos ] [ ( sin cos ) cos ] }

i

jm m

i i j j i kmm
i j i k ii

y x
i

m i mm

i j i i j i
ij i j i

x x
h h

y x y

μ θ θ θ θ
λπ

θ θ θ θ θ

−

+
= = + = +

=

−

== + = =

′ ′= − − +

′′ ′− − +

∑ ∑ ∏
∏

∑∏ ∏ ∏           (19)

where 

2
i

i
i

x

xx
h

′ = ,
2 y

yy
h

′ = ,

2 2

1cos ,sin
1 1

i
i i

i i

k
k k

θ θ= =
+ +

, iλ  is the flex 

coefficient, ik  the rotation coefficient. Thus the 
multi-dimensional ( 1+m –D) asymmetric information 
diffusing function was obtained. 

If there is a relationship between the input item 

ix′  and jx′ ( )i j≠ , the formula above should be 
transformed as follows: 

cos sin

sin cos
i i ij j ij

j i ij j ij

x x x

x x x

θ θ

θ θ

′ ′ ′= +⎧⎪
⎨ ′ ′ ′= − +⎪⎩

.       (20) 

4 ALGORITHM EXPERIMENT 

To examine the practical effectiveness and 
reliability of the information diffusion interpolation 
algorithm, the sea surface temperature (SST) 
reanalysis data provided by the U.S. National Centers 
for Environmental Prediction (NCEP) / National 
Center for Atmospheric Research (NCAR) is used to 
make an interpolation test and comparative analysis 
between different algorithms. 

The year of the reanalysis data is 2009 and the 
temporal resolution is monthly. Data coverage is the 
marine area from 100 to 250°E and from 0 to 60°N; 
the spatial resolution is 2°×2°, and there are a total of 
75 (zonal)×30 (meridional)=2,250 grids and nearly 
2,000 data grids are left after deducting the land. 

Experiment One: 
Data: 23 samples (about 1%) are randomly 

extracted from about 2,000 data points as “observed” 
data (the rest is treated as missing data); interpolation 
experiments and comparative analysis are conducted 

using the Kriging interpolation, the normal 
interpolation model and the asymmetric "ellipse" 
diffusion model proposed in this work, respectively. 

Objective: To examine the accuracy and 
reliability of different methods using the 1% 
“observation” points to interpolate the original sea 
surface temperature data. 

Figure 2 shows the results of the correlation 
coefficient and the mean square error being compared 
between the interpolated SST field and the actual field; 
the information diffusion interpolation is more 
accurate than the Kriging interpolation method, 
especially the asymmetric "ellipse" diffusion model 
that has the maximum correlation coefficient and 
minimal mean square error, meaning that the effect of 
the asymmetric "ellipse" diffusion model is the best. 

Experiment Two: 
Data: The area and time are the same as that in 

Experiment One but with the interpolated sample 
points increased by 10% by extracting 230 samples 
(10%) randomly from all data points as the 
“observed” data (the rest is treated as missing data), 
conducting interpolation experiments and comparative 
analysis using the Kriging model, the proposed 
normal interpolation model and the asymmetric 
“ellipse” diffusion model respectively, and examining 
the accuracy and reliability of different methods using 
the 10% “observation” points to interpolate the 
original data SST. 

Figure 3 shows the results of the correlation 
coefficient and the mean square error being compared 
between the interpolated SST field and the actual field; 
the effectiveness of different interpolation methods is 
close and the difference is small (the maximum 
difference of the correlation coefficient is 0.002 and 
the mean square error is 0.2, about an order of 
magnitude smaller compared with that of Experiment 
One). In contrast, the Kriging interpolation method is 
more effective than the information diffusion 
interpolation, meaning that the Kriging interpolation, 
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as a classical and mature interpolation algorithm, is reliable and effective.
 

 
Figure 2. Comparison of different interpolation algorithms (1% sample): Correlation coefficient (left panel); mean square error 
(right panel). 
 

 
Figure 3. Comparison of different interpolation algorithms (10% sample): Correlation coefficient (left panel); mean square error 
(right panel).

Comparisons of the results of Experiment One 
and Two are shown as follows. The interpolation 
methods based on the small-sample information 
diffusion proposed in this paper (particularly the 
asymmetric ‘ellipse’ diffusion model) have shown 
obvious advantages in dealing with the interpolation 
of very sparse samples. With the increase of sample 
data, their advantages gradually diminish (some 
degree of superiority still exists in tests with 2% to 
5% of the samples, figure not shown). In the 
interpolation experiments above, 5% can be 
considered as a critical point. For the sparse data field 
that is less than this criterion, the information 
diffusion interpolation model is more preferential than 
other techniques. For other types of sparse data set, 
the criteria should be a little different and evaluated 
according to actual condition, but their conjunct 
principle and core are suitable for analyzing and 
processing the interpolation calculation of imperfect 
information situations such as sparse data. 

Algorithm application: 
The information diffusion interpolation is applied 

to the standardized processing of the actual field of 
ARGO scattered elements. As ARGO floats observe 
once every 10 days on average and much less ARGO 
floats data can be received within a day, ARGO 

observational data belong to the data field distributed 
sparsely, which means that it is suitable to interpolate 
by the information diffusion interpolation method. 

Data: ARGO floats at 10-m depth on January 1, 
2009; range: 100 to 250°E, 0 to 60°N. 

Figure 4 shows the ARGO buoy data (The small 
dots in the figure are for the buoy location, about 80 
of them) and the 1°×1° grid of the temperature field 
respectively using the symmetrical information 
diffusion and the asymmetric ‘ellipse’ model 
interpolation. There are more than 4,000 data grid 
points in the region (excluding the land), so the result 
is equivalent to interpolation of 2% of ARGO sparse 
samples. In contrast, the ellipse model has a richer 
description of the details of the results. 

As there is no operational reanalysis grid data set 
of ARGO for contrast tests, the corresponding 
correlation analysis and error analysis were not done. 
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Figure 4. Grid point interpolation field of ARGO observational data of sea surface temperature: Symmetrical information diffusion 
(left panel); asymmetric ellipse model interpolation model (right panel).

5 SUMMARY 

Addressing the difficulties of the scattered and 
sparse observational data in marine science, a new 
interpolation technique based on the information 
diffusion idea is proposed in this paper. Based on the 
idea of fuzzy sets and by constructing the spread 
function approximate to the goal data’s distribution 
structure, the limited data samples are diffused and 
mapped into the corresponding fuzzy sets in the form 
of probability in the information diffusion 
interpolation model. To avoid the shortcomings of 
asymmetrical data structure in the normal diffusion 
function, a type of asymmetric information diffusion 
function is developed and a corresponding 
asymmetric information diffusion algorithm-ellipse 
model is established. Contrastive experiment analysis 
shows that the chief advantages of the information 
diffusion interpolation technique outdo other methods 
and that it is suitable for dealing with the sparse 
observational data (usually with less than 5% 
samples). It provides reference to the analysis and 
processing of small-sized samples and sparse data that 
actually exist in the natural sciences. 
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