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Abstract: Experiments of forecasting daily bi-variate index of the tropical atmospheric Madden–Julian 
Oscillation (MJO) are performed in the context of adaptive filtering prediction models by combining the 
singular spectrum analysis (SSA) with the autoregressive (AR) methods. the MJO index, a pair of empirical 
orthogonal function (EOF) time series, called RMM1 and RMM2, predicts by the combined statistical SSA 
and AR models: firstly, according to the index of historic observation decomposed by SSA and then 
reconstructed by selecting the first several components based on prominent variance contributions; after that, 
established an AR prediction model from the composite (scheme A) or built the forecast models for each of 
these selected reconstructed components, separately (Scheme B). Several experimental MJO index forecasts 
are performed based on the models. The results show that both models have useful skills of the MJO index 
forecast beyond two weeks. In some cases, the correlation coefficient between the observed and predicted 
index series stays above 0.5 in 20 leading days. The SSA-AR model, based on the reconstructed composite 
series, has better performance on MJO forecast than the AR model, especially for the leading time longer 
than 5 days. Therefore, if we build a real-time forecast system by the SSA-AR model, it might provide an 
applicable tool for the operational prediction of the MJO index. 
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1  INTRODUCTION  

Tropical atmospheric intraseasonal oscillation 
(ISO), i.e. the atmospheric 30-60 day low frequency 
oscillation, also called Madden-Julian oscillation 
(MJO), is the most prominent oscillation signal on the 
intraseasonal scale over the global tropical regions. Its 
activities are significantly related to the tropical 
climate systems, such as the evolution (onset, 
strengthening, break, and withdrawal) of monsoon 
systems (Madden and Julian[1, 2]; Li[3, 4]; Jia and Li[5]; 
Lin et al.[6]). Since Madden and Julian presented the 
MJO in the early 1970s, it has been an interesting 
topic for meteorological researchers both in China and 
overseas. 

It is a well-known fact that prediction on a time 
scale from two weeks to a season is a crux in 
long-range weather forecasts and short-range climatic 
predictions. The MJO, as an intrinsic variation on a 
time scale between the short range (2-7 days) and the 
seasonal range (90 days), provides a direct 

background for high frequency weather disturbances, 
and is also a principal component of monthly and 
seasonal mean variations. Meanwhile, it modulates 
the activities of monsoon systems and affects the 
middle latitude weather through jets. Therefore, 
prediction of the MJO has drawn much attention from 
researchers in China and overseas in the recent years. 
Von Storch and Xu[7] and Lo and Hendon[8] used the 
principal oscillation pattern (POP) technique and the 
empirical orthogonal function (EOF) method, 
respectively, to identify the MJO and made prediction, 
yielding a correlation skill of 0.4 for 15-day forecasts 
for all seasons; the latter reached 0.48 for the 
correlation coefficient between the observations in the 
validation set and the forecasts. Maharaj and 
Wheeler[9] made 14-15 days ahead the prediction of a 
daily bi-variate index of the MJO, defined by Wheeler 
and Hendon[10] (WH04 hereafter), using the 
autoregression (AR) method. Therefore, considerable 
predictability of the MJO may lie on a time scale from 
a week to a month. At present, some institutions, such 
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as Climate Prediction Center in U.S. and Australian 
Bureau of Meteorology Research Center, have 
employed both dynamical models (GEFS/NCEP, 
GFS/NCEP, etc) and statistical methods (lag 
regression and linear autoregression) to forecast the 
MJO, with emphasis on operational forecasts of the 
MJO[11, 12]. Obviously, increasing the ability of models 
to forecast the MJO using various methods will be 
beneficial to the ability of predicting the short range 
climate on the time scale of two weeks to a month. 

The singular spectrum analysis (SSA), as a digital 
signal processing technique, was introduced to 
climatic diagnosis and prediction research by Vaulard 
et al.[13] and Ghil and Mo[14] in the early 1990s, and it 
was mainly used to both analyze the quasi-periodic 
signals and extract related signals. Ding et al.[15] 
conducted forecast experiments for Niño-region 
averaged monthly sea surface temperature (SST) 
anomaly series by reconstruction of the adaptive 
filtered signals of SSA and then based on the AR 
prediction modeling. The results show that the 
SSA-AR model based on the reconstructed SST 
anomaly series are superior in forecast accuracy over 
the corresponding AR model based on the original 
SST anomaly series. Furthermore, the predictions of 
the 1997/98 strong ENSO event by the SSA-AR 
model were very successful, as well as predicting the 
other three historic strong ENSO events (1974–1976, 
1980–1983 and 1984–1986) several months ahead 
with a high confidence level. 

Two SSA-AR prediction schemes based on the 
reconstructed index series and an AR prediction 
model based on the original index series (following 
WH04) were designed in this paper, four prediction 
cases were selected, and a series of prediction 
experiments were performed and the experimental 
results were compared in order to select the best 
model among them for applying to the real-time 
operational forecast of the MJO. 

2  MJO INDEX AND ITS PREDICTION 
MODELS 

2.1  MJO index vector 

Wheeler and Hendon[10] presented a MJO index 
comprising a pair of projection time series of the 
leading empirical orthogonal functions (EOFs) of the 
combined fields: 850-hPa zonal wind, 200-hPa zonal 
wind, and satellite-observed outgoing longwave 
radiation (OLR) averaged near-equatorially (15° 
S–15° N). Two components of the MJO index vary 
mostly on the 30- to 80-day timescale, and are called 
the Real-time Multivariate MJO series 1 (RMM1) and 
2 (RMM2). During times of identifiable MJO 
activities, RMM1 leads RMM2 by about a quarter 
cycle, indicating the eastward propagation of the MJO 
along the equator. Fig. 1 displays the 2-D phase 

diagram from 1st November to 31st December 2007. 
It can be seen from the figure that RMM1 and RMM2 
in the phase diagram could define eight different 
regions of the phase space, corresponding to the 
location of the MJO. On one hand, the MJO index 
vector quantitatively describes the intensity of the 
MJO, such as the strong activity of the MJO in Fig. 1 
where the amplitude of the oscillations, 
( 21 22 RMMRMM + ), is larger than one (normalized 
standard variation), and there are weak activity 
regions inside of the circle. On the other hand, the 
index vector has directivity and is able to delineate the 
location as well as the eastward propagation direction 
of the MJO along the equator. In WH04, the relations 
of the MJO with the onsets of the Australian monsoon 
and the Indian monsoon and the modulation of the 
MJO on Australian precipitation are investigated by 
using the MJO index. Jeong et al.[16] recently explored 
the influence of the MJO on East Asian winter 
precipitation in terms of the MJO index. These studies 
suggest that the pair of the RMM1 and RMM2 series is 
a good indicator of the MJO’s intensity and variation. 
At present, the RMM1 and RMM2 are computed daily 
for real-time MJO monitoring, and forecasts from 
dynamic models (GEFS/NCEP, GFS/NCEP, etc) in 
Climate Prediction Center/NOAA, U.S. and 
Australian Bureau of Meteorology Research Center, 
which provide predicted values of the index two 
weeks in advance. The forecast MJO index has 
become a very useful tool to apply to global tropics 
hazards assessment and short-term climate prediction. 
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Fig. 1. (RMM1, RMM2) phase space points for all days in 
November to December 2007. Eight defined regions of the 
phase space are labeled, as is the region considered to signify 
weak MJO activity. Also labeled are the approximate locations 
of the enhanced convective signal of the MJO for that location 
of the phase space. 

2.2  SSA-AR(p) random vector prediction models 

2.2.1 SSA 
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The SSA is an anamorphosis of principal 
component analysis (PCA) or EOFs. Arranging a time 
series {Xt}, t = 1,…, N successively in one time unit 
lag in the next row. For m intervals it yields an m × n 

matrix. 
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The EOF expansion of matrix X is called time-domain 
EOF expansion (denoted as TEOF).  

Eigenvectors obtained from the matrix are called 
canonical waveform signals, denoted as TEOF1, 
TEOF2,…, and their corresponding principal 
components are denoted as TPC1, TPC2, …, etc. 

Then the component series of various frequencies are 
reconstructed with corresponding TPCs and TEOFs, 
respectively, and are denoted as RCs. The calculation 
of the kth canonical wave for the ith phase component 
is based on
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where Lki is the ith phase component of the kth 
canonical wave, ak,t-i+1  is the value of the kth 
principal component at the time of t-i+1. If we cut off 
the high frequency, p represents the series number of 
first p components. The first p prominent canonical 
waveforms or periodical components in Eq. (2) are 
used to reconstruct the original series, 
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where X kt )(  is the reconstructed series of the kth 
component of Xt, generally denoted as RCs-K (Ding 
and Jiang[17]). 

2.2.2 AR(p) MODEL OF RANDOM VECTORS 

AR prediction modeling is very similar to 
multivariate linear prediction modeling. The 
autoregressive model of a time series takes some 
values of the time series at past times as predictors. 
Assuming that time series [ ]xxxX ntttt ,...,,

21
= T is an 

n-dimension stationary random series, then the 
following random vector AR(p) model can be 
established.
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where A1, A2, …, Ap are the regression coefficients, 
each one is a matrix, such as  
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μ
t= [ μ

1t, μ 2t,..., μ nt]T is an n-dimension white noise. 
Regression coefficient matrices A1，A2，…，Ap can be 
obtained by estimation of the minimum square root of 
variance, and then the AR model in a form of random 
vectors, such as Eq. (4), can be established. 

2.2.3 SSA-AR(p) MODELS 

The following two schemes were used in this 
paper to build up SSA-AR(p) models for forecasting 
the MJO index vector: 

Scheme A: (i) decompose the MJO index yielding 
TEOFs and TPCs; (ii) compute RCs component using 
Eq. (2); (iii) select the first several components 
according to prominent variance contributions, and 
then calculate the composite of the RCs according to 
Eq. (3); (iv) establish the SSA-AR(p) prediction 
model for the composite using the AR(p). The model 
established on Scheme A is denoted as SSA-AR(A). 

The reconstructed component prediction model 
based on Scheme B uses the same steps (i) and (ii) as 
in Scheme A. Then, step (iii) is used to select the first 
several components with prominent variance 
contributions, and establish a random vector 
autoregressive prediction model in the form of Eq. (4) 
for each of these selected reconstructed component, 
separately. After that, (iv) prediction of the original 
series is realized by adding up the predicted values of 
these selected reconstructed components. The model 
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with Scheme B is denoted as the SSA-AR(B). 
To assess the performance of Schemes A and B, 

the MJO index series were also directly used to build 
the AR(p) prediction model, which is the same as that 
used by Maharaj and Wheeler (MW), and therefore 
denoted as MW-AR model. For details of its modeling 
method, refer to Maharaj and Wheeler[9]. 

3  ANALYSIS OF RESULTS FROM SSA-AR 
MODELS 

3.1  Analysis of the results of SSA 

The results of SSA performance with RMM1 and 
RMM2 series from 1st January 1979 through 31st 
December 2000 (N=8036）are listed in Table 1. The 
TPCs1-6 / TPCs1-8 of the first six/eight canonical 
waveform vectors for the RMM1 series account for 
69.83% / 80.23% of the total variance, respectively, 
and the TPCs1-10 accounts for 86.18% of the total 

variance. For the RMM2 series, the TPCs1-6, 
TPCs1-8 and TPCs1-10 account for 72.33%，82.57% 
and 87.83% of the total variance, respectively. The 
reconstructed component series, RCs, for RMM1 and 
RMM2, are calculated from Eq. (2) by their selected 
TPCs and TEOFs, and summing up the RCs1-K by Eq. 
(3) yields their composite series, respectively. The Xt 
obtained in such a way is virtually equivalent to a 
low-pass filtered series of the original series. Fig. 2 
shows the original series and the RCs1-6 composite 
series of RMM1 from 1st January 1979 to 31st 
December 1982. It is shown that the RCs1-6 
composite series is RMM1 with high-frequency 
noises filtered. The correlation coefficient between the 
original and the RCs1-6 composite of RMM1 is 0.902. 
Applying SSA decomposition to RMM2 is similar to 
that of RMM1 (Figure omitted) and the correlation 
coefficient of RMM2 is 0.95.

 
Table 1. Variance contributions (VC) and accumulative VCs (AVC) of the TPCs1-10 of the first ten canonical waveforms for the 

RMM1 and RMM2 series from 1st January 1979 through 31st December 2000. 

RMM1 VC(%) AVC(%) RMM2 VC(%) AVC(%) 
TPC1 17.00 17.00 TPC1 17.26 17.26 
TPC2 16.24 33.24 TPC2 16.87 34.13 
TPC3 11.54 44.78 TPC3 12.85 46.98 
TPC4 10.17 54.95 TPC4 11.01 57.99 
TPC5 7.470 62.42 TPC5 7.540 65.53 
TPC6 7.410 69.83 TPC6 6.800 72.33 
TPC7 6.190 76.02 TPC7 6.230 78.56 
TPC8 4.210 80.23 TPC8 4.010 82.57 
TPC9 
TPC10 

3.390 
2.560 

83.62 
86.18 

TPC9 
TPC10 

3.020 
2.240 

85.59 
87.83 

 
3.2  SSA-AR(p) modeling and analysis of prediction 
results 

For the convenience of comparison with MW’s 
results, data from 1st January 1979 through 31st 
December 2000 (N=8036）were used to fit AR models. 
The final prediction error (FPE) criterion was used to 
select the optimal order p for the RCs1-K composite 
series and component series of RMM1 and RMM2. 

The results show that most RCs series are consistent 
with AR(1) models. 

Similarly with MW’s, data from 1st January 2001 
to 10th November 2003 were used for the validation 
of SSA-AR(A), SSA-AR(B) and AR models. The 
correlation coefficients between the observed and 
predicted values are used to assess prediction abilities 
of the three models.
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Fig. 2. The original series and RCs1-6 composite series of RMM1 from 1st January 1979 through 31st December 1984. 
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In SSA-AR prediction modeling, the prediction 
effectiveness is directly related to the number of 
component series with prominent variance 
contributions used. Table 2 exhibits the correlation 
skills of 6, 8 and 10 RCs SSA-AR(A) models; for 
short-range (1-7 days) forecasts, the skills of the 
RCs1-6 SSA-AR models for RMM1 and RMM2 are 
lower than those of 8 and 10 RCs models. However, 
for the extended-range (8-20 days) forecasts the 
opposite is true, and the RCs1-6 SSA-AR models 
yield a correlation skill of 0.5 for 20-day forecasts in 

the validation experiment, and the corresponding 
skills of the 8 and 10 RCs models are only 0.466 and 
0.453, respectively. The objective of this paper is to 
select a model for operationally making the longer 
lead time forecasts of the MJO, therefore the RCs1-6 
SSA-AR models are appropriate. Similar prediction 
experiments were also performed for the SSA-AR(B) 
models, yielding similar results. Therefore, the 
comparison of prediction modeling for SSA-AR(A) 
and SSA-AR(B) below is all based on the first six 
reconstructed component series RCs1-6.

 
Table 2. RMM1 and RMM2 prediction abilities (correlation coefficient between the predicted and observed values) of SSA-AR(A), 

SSA-AR(B) and AR(p) models in the validation experiment from 1st January 2001 to 10th November 2003. 

                    SSA-AR prediction modeling  
MW-AR(P) prediction 

modeling 
             

SSA-AR(A) SSA-AR(B) 

RCs1-6 compos. series RCs1-8 compos. 
series 

RCs1-10 compos. 
series 

RCs1-6 component 
series 

Lead 
time 

(days) 

RMM
1 

RMM
2 

RMM1 RMM
2 

RMM1 RMM2 RMM
1 

RMM2 Lead 
time 

(days) 

RMM1 RMM2

1 0.885 0.942 0.927 0.963 0.946 0.974 0.884 0.940 1 0.977 0.985 

2 0.876 0.939 0.914 0.957 0.929 0.967 0.870 0.934 2 0.931 0.957 

3 0.859 0.934 0.895 0.947 0.903 0.954 0.848 0.926 3 0.880 0.924 

4 0.837 0.926 0.871 0.933 0.870 0.937 0.82 0.915 4 0.829 0.889 

5 0.811 0.916 0.842 0.916 0.834 0.915 0.788 0.899 5 0.782 0.853 

6 0.782 0.903 0.812 0.894 0.796 0.888 0.756 0.878 6 0.741 0.815 

7 0.753 0.887 0.781 0.868 0.760 0.857 0.727 0.852 7 0.708 0.775 

8 0.725 0.867 0.751 0.839 0.728 0.823 0.704 0.820 8 0.682 0.733 

9 0.698 0.844 0.723 0.807 0.700 0.785 0.687 0.782 9 0.662 0.690 

10 0.675 0.816 0.698 0.772 0.677 0.745 0.677 0.739 10 0.645 0.650 

11 0.655 0.786 0.676 0.735 0.658 0.704 0.675 0.692 11 0.629 0.613 

12 0.638 0.752 0.655 0.697 0.641 0.663 0.674 0.644 12 0.606 0.580 

13 0.624 0.717 0.636 0.659 0.626 0.623 0.673 0.599 13  0.589 0.549 

14 0.611 0.680 0.618 0.621 0.610 0.585 0.671 0.569 14  0.571  0.518

15 0.600 0.643 0.600 0.585 0.593 0.549 0.666 0.550 15  0.552 0.490 

16 0.588 0.606 0.581 0.551 0.574 0.518 0.647 0.540 16  0.534 0.465 

17 0.576 0.571 0.561 0.519 0.552 0.490 0.618 0.529 17  0.517  0.443

18 0.562 0.537 0.539  0.491 0.528 0.466 0.58 0.518 18  0.498  0.424

19 0.546 0.507 0.515 0.466 0.501 0.447 0.533 0.511 19  0.478  0.409

20 0.526 0.480 0.488 0.444 0.473 0.432 0.494 0.507 20  0.456  0.396

 
Figures 3 and 4 show the 10-day forecasts of 

RMM1 series, respectively, by the RCs1-6 
SSA-AR(A) and RCs1-6 SSA-AR(B) models as well 
as the MW-AR model. For the sake of brief 
description, only the predicted RMM1 series from 1st 

January 2001 to 23rd August 2002 are given. The 
correlation coefficients between the original and 
predicted series for the three prediction models are 
0.675, 0.677 and 0.645, respectively, and therefore the 
correlation skill of the AR model based on the original 
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series for 10-day forecasts is relatively low compared 
to those of the SSA-AR(A) and SSA-AR(B) models. 
The reason is that the SSA decomposition of the 
original series is equivalent to performing a low-pass 
filtering to the original series, thus removing the 
influence of background noises and improving the 
prediction effectiveness of SSA-AR models. 

Figure 5 shows the RCs1-6 SSA-AR(A), RCs1-6 
SSA-AR(B) and MW-AR model’s prediction skill, as 
determined by the correlations, up to day 20. It can be 
seen from the figure that the skills of the 1-3 day for 
RMM1 forecasts by MW-AR model is better than 
those by SSA-AR(A) and SSA-AR(B) models. 
However, its more-than-3-day forecasts are obviously 
worse than those by the SSA-AR models. If we 
assume that a correlation coefficient of 0.5 is a useful 
skill criterion, the lead time of the skillful forecasts of 

SSA-AR(A) and SSA-AR(B) models is 20 and 19 
days, respectively, both longer than the 17 days of the 
MW-AR model. The results for RMM2 forecasts are 
similar to RMM1. The skill of the 1-2-day RMM2 
forecasts of MW-AR model is better than those of the 
SSA-AR models; after the first three days, however, 
forecasts are obviously worse than those by the 
SSA-AR models. The lead time of the skillful 
forecasts of SSA-AR(A) and SSA-AR(B) models is 
also 20 and 19 days, respectively, both longer than the 
14 days of MW-AR model. For forecasts of both 
RMM1 and RMM2, the average skill of the 1-3 day 
forecasts of MW-AR model is better than those of the 
SSA-AR models; but after 3 days, the forecast skill 
rapidly decreases and the lead time of skillful 
forecasts is 5 days shorter than those of both 
SSA-AR(A) and SSA-AR(B) models, respectively.
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Fig. 3. The original RMM1 series from 1st January 2001 to 23rd August 2002, and its 10-day predicted series by the RCs1-6 

SSA-AR(A) model and MW-AR model. 
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Fig. 4. Same as Fig.3 except by the RCs1-6 SSA-AR(B) model.

Comparing SSA-AR(A) with SSA-AR(B) 
schemes reveals that their skills are close to each other 
and the lead time of the 0.5 correlation is both 20 days. 

However, the computation of prediction modeling 
with SSA-AR(A) scheme is easier than that of 
SSA-AR(B) scheme. 
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Put in a brief summary from the above analysis, 
the forecast skills of the two SSA-AR schemes in 
extended-range forecasts are better than that of the 
MW-AR scheme because the SSA-AR(A) and 
SSA-AR(B) models are based on RCs1-6 composite 
series and component series, respectively, which 

reduce or remove the background noises from the 
reconstructed series by the 
decomposition-composition of SSA in prediction 
modeling and yield 5-day improvement of the MJO 
index forecasts.

 

Fig. 5. Prediction skill of MW-AR models, SSA-AR(A) and SSA-AR(B) models for (a) RMM1 series, (b) RMM2 series, 
and (c) both RMM1 and RMM2 series (the abscissa: days ahead of time; the ordinate: correlation coefficient).

3.3  Analysis of prediction cases of the MJO index 

To validate MJO index forecast of the SSA-AR 
models, the 20-day forecasts of RMM1 and RMM2 
started from 16th November 2002, 22nd October 2003, 
1st May, 2006 and 3rd January 2008 were plotted in 
Fig. 6. For convenience of comparison, the first two 
initializations were selected to fall on the same dates 

as that in MW’s (Maharaj and Wheeler[9]). 
As illustrated in Fig. 6, all tracks of predicted and 

observed values in the four cases rotate 
counterclockwise from the initial points, reflecting the 
eastward propagation characteristic of the MJO along 
the equator. For the 2002 case, the amplitude 
predicted by the 1-3 day forecasts of MW-AR models 
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is closest to the observation. However, after 3 days, 
the predicted amplitude rapidly decays, much 
different from the observation. The prediction skills of 
the amplitude of the two SSA-AR models are 
obviously superior over that of the MW-AR model, 
and the amplitude predicted by SSA-AR(A) models is 
closest to the observation. With regard to the eastward 
propagation, the 20-day ahead prediction skill of 

eastward propagation speed for MW-AR models is 
inferior to that of SSA-AR(B) models, whose 
predicted speed is closest to the observation. For the 
2003 case, the amplitude of the MJO predicted by 
MW-AR models is closer to the observation than 
those by the other two models. However its predicted 
eastward propagation speed is obviously inferior to 
that by SSA-AR(B) models.

 

 
Fig. 6. RMM1 and RMM2 forecasts by SSA-AR(A) models (triangles), SSA-AR(B) models (squares) and MW-AR models 

(crosses), and their validating observations (circles) for four example periods (Initialization dates of the 1- to 20-day ahead 
forecasts are 15th November 2002, 21st October 2003, 30th April 2006 and 2nd January 2008), as represented in the two- 
dimensional phase space they define. Also labeled are the approximate locations around the earth where the enhanced 
convective signal of the MJO will be located for that part of the (RMM1, RMM2) phase space (e.g. ‘Indian Ocean’ for the 
MJO signal in convection located over the near-equatorial Indian Ocean).

A consistent conclusion can be drawn from the 
four prediction cases that the 1-5 day amplitude 
forecast skills for the two SSA-AR models are close 
to each other. After 5 days, the predicted amplitude by 
SSA-AR(B) models decays rapidly but the predicted 
amplitude by SSA-AR(A) is closer to the observation. 
The forecast skills of eastward propagation speed of 

SSA-AR(A) model in all four cases are obviously 
slower than that of SSA-AR(B) models. 

The above forecast experiments have 
demonstrated that both SSA-AR(A) and SSA-AR(B) 
schemes are able to make 20-day lead useful forecasts 
of the MJO index. The phase evolution of the MJO 
described by both schemes is consistent with the 
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observations, except that there are still some 
differences in the eastward propagation speed, period 
and amplitude of the MJO between predicted and 
observed values in some individual cases. Generally 
speaking, the forecast skill of SSA-AR(A) models for 
the amplitude of the MJO is higher, while that of 
SSA-AR(B) models for the eastward propagation 
speed of the MJO is better. 

4 SUMMARY  

(1) SSA-AR(A) and SSA-AR(B) models for the 
MJO vector both achieve an average correlation skill 
of 0.5 for 20-day forecasts, which is a 5-day 
improvement in lead time relative to MW-AR models 
(Maharaj and Wheeler[9]). It derives from using SSA 
in prediction models because SSA is equivalent to 
performing a low-pass filtering to the original series 
of the MJO index, removing both high-frequency 
noises and non-periodic weak signals, and enhancing 
predictability of the MJO component by reconstructed 
series. 

(2) In the forecast experiments of the four cases, 
the predicted values from two SSA-AR schemes on 
the whole fit well with the observation values, except 
with slightly slower eastward propagation speed and 
faster decay amplitude of the MJO in some individual 
cases. 

(3) Relatively, the forecast skill of SSA-AR(A) 
models for the amplitude of the MJO is higher, while 
that of SSA-AR(B) models for the eastward 
propagation speed of the MJO is better. If SSA-AR(A) 
and SSA-AR(B) schemes are further improved from 
various aspects, they might provide effective 
operational tools to forecast the MJO index for longer 
than 20 days. 

REFERENCES: 

[1] MADDEN R A, JULIAN P R. Detection of a 40-50 day 
oscillation in the zonal wind in the tropical Pacific [J]. J. Atmos. 
Sci., 1971, 28: 702-708. 
[2] MADDEN R A, JULIAN P R. Description of global scale 
circulation cells in the tropics with a 40-50 day period [J]. J. 
Atmos. Sci., 1972, 29: 1109-1123. 
[3] LI Chong-yin. Atmospheric Low-Frequency Oscilations 
[M]. Beijing: China Meteorological Press, 1993: 19-43 (in 

Chinese). 
[4] LI Chong-yin. Research progresses in atmospheric 
intraseasonal oscillations [J]. Prog. Nat. Sci., 2004, 14(7): 
734-741 (in Chinese). 
[5] JIA Xiao-long, LI Chong-yin. Seasonal characteristics of 
tropical atmospheric intraseasonal oscillations and its behavior 
in the SAMIL-R42L9 model [J]. J. Trop. Meteor., 2007, 23(3): 
219-228 (in Chinese). 
[6] LIN Ai-lan, LIANG Jian-yin, GU De-jun. Research 
progresses in influence of tropical atmospheric intraseasonal 
oscillations on the East Asian monsoon region and its different 
time scale changes [J]. J. Trop. Meteor., 2008. 24(1): 11-19 (in 
Chinese). 
[7] VON STORCH H, XU J. Principal oscillation pattern 
analysis of the tropical 30–60 day oscillation. Part I: Definition 
of an index and its prediction [J]. Climate Dyn., 1990, 4: 
179-190. 
[8] LO F, HENDON H H. Empirical extended-range prediction 
of the Madden-Julian oscillation [J]. Mon. Wea. Rev., 2000, 
128: 2528-2543. 
[9] MAHARAJ E A, WHEELER M C. Forecasting an index of 
the madden-oscillation [J]. Int. J. Climatol., 2005, 25: 
1611-1618. 
[10] WHEELER M C, HENDON H H. An all-season real-time 
multivariate MJO index: Development of an index for 
monitoring and prediction [J]. Mon. Wea. Rev., 2004, 132: 
1917-1932. 
[11] National Weather Service (USA). MJO Monitoring and 
Forecast [EB/OL]. http://www.cpc.ncep.noaa.gov/ 
products/people/wd52qz/mjoindex/ MJO_INDEX.html. 
[2009-01-15] 
[12] Bureau of Meteorology Research Center (Australia). An 
All-season Real-time Multivariate MJO Index [EB/OL]. 
http://www.bom.gov.au/bmrc/clfor/cfstaff/matw/maproom/RM
M/ [2009-01-15] 
[13] VAUTARD R, YIOU P, GHIL M. SSA: A toolkit for short, 
noisy chaotic signals [J]. Phys. D., 1992, 58: 95-126. 
[14] GHIL M, MO K C. Interseasonal oscillations in the global 
atmosphere [J]. J. Atmos. Sci., 1991, 48: 752-779. 
[15] DING Yu-guo, JIANG Zhi-hong, ZHU Yan-feng. 
Experiment on short-term climatic prediction to SSTA over the 
Nino oceanic region [J]. J. Trop. Meteor., 1998. 14(4): 289-296 
(in Chinese). 
[16] JEONG Jee-hoon, KIM Baek-min, HO Chang-hoi, et al. 
Systematic variation in wintertime precipitation in East Asia by 
MJO-induced extratropical vertical motion [J]. J. Climate, 2008, 
21: 788-801. 
[17] DING Yu-guo, JIANG Zhi-hong. Signal Processing of 
Meteorological Data Time Series [M]. Beijing: China 
Meteorological Press. 1998. 91-172 (in Chinese). 
 

Citation: JIANG Zhi-hong, ZHANG Qin, ZHU Hong-rui et al. Forecasting the MJO index based on SSA-AR. J. Trop. Meteor., 
2011, 17(4): 317-325. 


